
CSTA K–12 
Computer 
 Science 
 Standards

Revised 2011

The CSTA Standards Task Force



K–12 Computer Science Standards
Revised 2011

The CSTA Standards Task Force

Deborah Seehorn, Chair
North Carolina Department of Public Instruction

Stephen Carey
Brunswick School Department

Brian Fuschetto
Lyndhurst High School

Irene Lee
Santa Fe Institute

Daniel Moix
College of the Ouachitas

Dianne O’Grady-Cunniff
Westlake High School

Barbara Boucher Owens
Southwestern University

Chris Stephenson
Computer Science Teachers Association

Anita Verno
Bergen Community College



Computer Science Teachers Association
Association for Computing Machinery

2 Penn Plaza, Suite 701
New York, New York 10121-0071

Copyright © 2011 by the Computer Science Teachers Association (CSTA) and the 
Association for Computing Machinery, Inc (ACM). Permission to make digital or hard 
copies of portions of this work for personal or classroom use is granted without fee 
provided that the copies are not made or distributed for profit or commercial advantage 
and that copies bear this notice and the full citation on the first page. Copyrights for 
components of this work owned by others than ACM must be honored. Abstracting 
with credit is permitted. 

To copy otherwise, to republish, to post on servers or to redistribute to lists, requires 
prior specific permission and/or a fee. Request permission to republish from: 
Publications Dept. ACM, Inc. Fax +1-212-869-0481 or E-mail permissions@acm.org. 

For other copying of articles that carry a code at the bottom of the first or last page, 
copying is permitted provided that the per-copy fee indicated in the code is paid 
through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.  

ACM ISBN: # 978-1-4503-0881-6
ACM Order Number: # 104111

Cost: $15.00

Additional copies may be ordered prepaid from:

ACM Order Department Phone: 1-800-342-6626
P.O. Box 11405    (U.S.A. and Canada)

Church Street Station +1-212-626-0500
New York, NY 10286-1405    (All other countries)

 Fax: +1-212-944-1318
 E-mail: acmhelp@acm.org



csta k–12 computer science standards  •  i

Acknowledgments

The CSTA Standards Task Force thanks the following organizations and individuals. First we 
thank the National Science Foundation for its support of CSTA as an organization and for its 
commitment to improving computer science education. We also thank our corporate sponsors 
(Google, Microsoft, the College Board, and the Anita Borg Institute) for their ongoing support.

We are especially grateful to all of the individuals who took the time to read and review this 
document, especially:

Gail Chapman, ECS Director of National Outreach, Exploring Computer Science Program
Renee Ciezki, Computer Science Instructor, Estrella Mountain Community College
Creighton Edington, Deming Public Schools
Dr. Barbara Ericson,  Director of Computing Outreach for the Institute for Computing Education, 

Georgia Tech
Dr. Michael Erlinger, Professor of Computer Science, Harvey Mudd College
Dave Feinberg, Teaching Professor of Computer Science, Carnegie Mellon University
Baker Franke, University of Chicago Lab High School
Dr. Joanna Goode, Assistant Professor of Education Studies, University of Oregon
Dr. David Hemmendinger, Professor Emeritus Dept. of Computer Science, Union College
Stephanie Hoeppner, Clermont Northeastern Schools
Joe Kmoch, Milwaukee Public Schools
Carl Lyman, Utah State Office of Education
Dr. Jane Margolis, Senior Researcher, UCLA Graduate School of Education, UCLA
Deepa Muralidhar, North Gwinnett High School
Joshua Paley, Henry M. Gunn HS
Tammy Pirmann, Springfield Township High School
Kelly Powers, Advanced Math and Science Academy
Beth Richtsmeier, Meridian Technical Charter HS
Dr. Eric Roberts, Professor of Computer Science, Stanford University
Esther Romero, Portland Pubic Schools
Cameron Wilson, Director of Public Policy, ACM
Nancy Yauneridge, Saint Benedict School

We especially wish to acknowledge Dr. Allen Tucker for his vision and leadership in creating the 
first CSTA/ACM K–12 computer science standards and his support at the beginning of this project.

Thanks are also due to our wonderful designer Bob Vizzini and our exacting copyeditor Kate Conley.

Thanks to CSTA Chairperson Dr. Steve Cooper and Advisory Council Chair Dr. Debra Richardson 
and to all the members of the CSTA Board of Directors and Advisory Council.

Finally to all the staff and volunteer leadership of ACM, who brought CSTA into being and 
continue to support us every day.



csta k–12 computer science standards  •  ii

Executive Summary

Over the past few decades, computers have transformed both the world and the workforce 

in many profound ways. As a result, computer science and the technologies it enables 

now lie at the heart of our economy and the way we live our lives. To be well-educated 

citizens in a computing-intensive world and to be prepared for careers in the 21st century, 

our students must have a clear understanding of the principles and practices of computer 

science. No other subject will open as many doors in the 21st century as computer science, 

regardless of a student’s ultimate field of study or occupation.

As the report Running on Empty: The Failure to Teach Computer Science in the Digital Age (http://csta.

acm.org/Communications/sub/Documents.html) makes clear, the current state of computer sci-

ence education is unacceptable at a time when computing is driving job growth and new scientific 

discovery. Roughly two-thirds of the fifty states do not have computer science standards for sec-

ondary school education. Even when they exist, computer science standards at the K–8 level often 

confuse computer science and the use of applications. Despite its importance as an academic field, 

few states count computer science as a core academic subject for graduation. Rules for computer 

science teacher certification vary widely from state to state and are often entirely unrelated to the 

needs of teaching in this discipline. These are national failings and ones that we cannot afford in 

this digital age.

This document provides comprehensive standards for K–12 computer science education designed 

to strengthen computer science fluency and competency throughout primary and secondary 

schools. It is written in response to the pressing need to provide academic coherence between 

coursework and the rapid growth of computing and technology in the modern world, alongside 

the need for an educated public that can utilize and build that technology most effectively for the 

benefit of society.

CSTA K–12 Computer Science Standards 

Deborah Seehorn, North Carolina Department of Public Instruction

Stephen Carey, Brunswick School Department

Brian Fuschetto, Lyndhurst High School

Irene Lee, Santa Fe Institute

Daniel Moix, College of the Ouachitas

Dianne O’Grady-Cunniff, Westlake High School

Barbara Boucher Owens, Southwestern University

Chris Stephenson, Computer Science Teachers Association

Anita Verno, Bergen Community College

http://csta.acm.org/Communications/sub/Documents.html
http://csta.acm.org/Communications/sub/Documents.html


iii  •  csta k–12 computer science standards

These standards provide a three-level framework for computer science. The first two levels are 

aimed at grades K–6 and 6–9 respectively. We expect that the learning outcomes in Level 1 will 

be addressed in the context of other academic subjects. The learning outcomes in Level 2 may be 

addressed either through other subjects or in discrete computer science courses. Level 3 is divided 

into three separate courses: Computer Science in the Modern World, Computer Science Principles, and 

Topics in Computer Science. The standards provided in Computer Science in the Modern World reflect 

learning content that should be mastered by all students; Computer Science Principles and Topics in 

Computer Science are courses intended for students with special interest in computer science and 

other computing careers, whether they are college-bound or not.

These recommendations are not made in a vacuum. We understand the serious constraints under 

which school districts are operating and the uphill battle that computer science faces in the light of 

other educational priorities. Thus, we conclude this report with a series of recommendations that 

are intended to provide support for a long-term evolution of computer science in K–12 schools. 

Significant progress has been made since the ACM Model Curriculum for K–12 Computer Science 

Education was first published in 2003 and revised in 2006. Many follow-up efforts are still needed, 

however, to sustain the momentum these standards generate. Teacher training, curriculum inno-

vation, teaching resources, and dissemination are but a few of these challenges.

These learning standards will serve as a catalyst for widespread adoption of computer science 

education for all K–12 students. We encourage you to read this document and then to take part in 

the effort to implement these standards in a way that benefits both you and the K–12 education 

community. Find information about ongoing activities to support computer science education in 

K–12 at the Computer Science Teachers Association’s Web site (csta.acm.org).

http://csta.acm.org


csta k–12 computer science standards  •  iv

c o n t e n t s

 acknowledgments   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . i

 executive summary   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . ii

1 . introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1

2 . computer science as a core discipline  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2

 2 .1 computer science is intellectually important  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2

 2 .2 computer science Leads to multiple career paths   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3

 2 .3 computer science teaches problem solving  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3

 2 .4 computer science supports and Links to other sciences  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4

 2 .5 computer science can engage all students  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4

3 . defining the terminology   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5

4 . organization of the Learning outcomes: Levels and strands   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 7

 4 .1 Levels  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 7

 4 .2 strands   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9

  4 .2 .1 computational thinking .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9

  4 .2 .2 collaboration  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 10

  4 .2 .3 computing practice and programming   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 11

  4 .2 .4 computer and communications devices  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 11

  4 .2 .5 community, Global, and ethical impacts  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 11

5 . comprehensive computer science standards for k–12  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 12

 5 .1  Level 1: computer science and me  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 12

 5 .2 Level 2: computer science and community  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 15

 5 .3 Level 3: applying concepts and creating real-World solutions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 17

  5 .3 .a computer science in the modern World .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 18

  5 .3 .B computer science principles  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 20

  5 .3 .c topics in computer science  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 22

   5 .3 .c .1 ap computer science a   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 22

   5 .3 .c .2 project-Based courses   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 22

   5 .3 .c .3 courses Leading to industry certification  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 24

6 . implementation challenges  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 25

7 . call to action   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 26

8 . activities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 27

 a .1 . sample activities for Level 1: computer science and me  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 27

 a .2 . sample activities for Level 2: computer science and community  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 32

 a .3 . sample activities for Level 3: applying concepts and creating real-World solutions  .  .  .  .  .  . 44

 a .4 . sample activities for Level 3c: topics in computer science  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 50

 a .5 . additional resources for Levels 3 .c .2 and 3 .c .3   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 51

references  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 54

k–12 standards scaffolding charts  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 55



csta k–12 computer science standards  •  1

1. Introduction

There is an urgent need to improve the level of pub-

lic understanding of computer science as an academic 

and professional field, including its distinctions from 

management information systems (MIS), information 

technology (IT), mathematics, and the other sciences. 

To function in society, every citizen in the 21st century 

must understand at least the principles of computer sci-

ence. A broad commitment to, and rigorous implemen-

tation of, K–12 computer science courses will create 

such broad public understanding and also will help to 

meet the growing needs of the international workforce. 

Elementary and secondary schools have a unique op-

portunity and responsibility to address this need.

Computer science is an established discipline at the 

collegiate and post-graduate levels. It is best de-

fined as “the study of computers and algorithmic 

processes, including their principles, their hardware 

and software designs, their applications, and their 

impact on society.” Unfortunately, computer science 

concepts and courses in the K–12 curriculum have 

not kept pace with other academic disciplines in the 

United States. As a result, the general public is not 

as well educated about computer science as it should 

be, to the point that the nation faces a serious short-

age of computer scientists at all levels that is likely to 

continue into the foreseeable future.

These computer science standards aim to help ad-

dress these problems. They provide a framework 

within which state departments of education and 

school districts can revise their curricula to better ed-

ucate young people in this important subject area and 

thus better prepare students for effective citizenship 

in the 21st century.

The purpose of this document is to set forth the com-

puter science knowledge and skills that students must 

have—at all stages of their learning—to enable them 

to thrive in this new global information economy. It 

defines a set of learning standards for K–12 computer 

science and suggests steps needed to enable their 

implementation. By implementing these standards, 

schools can introduce the principles and method-

ologies of computer science to all students, whether 

they are college or workplace bound. The standards 

outlined in this document complement existing K–12 

computer science and IT curricula where they are 

already established, especially the Advanced Place-

ment (AP) computer science curricula (AP, 2010) and 

professional IT certifications.

This document delineates a core set of learning stan-

dards designed to provide the foundation for a com-

plete computer science curriculum and its implemen-

tation at the K–12 level. To this end, these standards:

 1.  introduce the fundamental concepts of 

computer science to all students, beginning 

at the elementary school level;

 2.  present computer science at the secondary 

school level in a way that can fulfill 

a computer science, math, or science 

graduation credit;

 3.  encourage schools to offer additional 

secondary-level computer science courses 

that will allow interested students to study 

facets of computer science in more depth and 

prepare them for entry into the work force or 

college; and

 4.  increase the availability of rigorous computer 

science for all students, especially those who 

are members of underrepresented groups.

Our goal is for these standards to be coherent and 

comprehensible to teachers, administrators, and 

policy makers. For this reason, our discussions in the 

early part of this document focus on the current pro-

liferation and confusion of terms that often make this 

discipline seem ill defined and incomprehensible to 

those outside the field. We also attempt to describe 

the importance of computer science education as part 

National Standards for K–12 Computer Science



2  •  csta k–12 computer science standards

of the intellectual development of students at all lev-

els emphasizing the linkages between computer sci-

ence and innovation across all disciplines.

All drafts of this report have been informed by feed-

back from many organizations and individuals. We 

hope that this final draft will receive widespread dis-

semination and continued scrutiny from everyone 

who has interests or experience in K–12 education. 

To that end, we have published these standards on 

the CSTA Web site (http://csta.acm.org) as well as 

in hardcopy form.

These standards are critical to ensuring that students 

achieve the necessary level of knowledge, skills, and 

experience to thrive in the modern world. While we 

recognize that there are many obstacles to adopting 

rigorous computer science in the K–12 classroom, we 

cannot as a nation afford to let the current situation 

continue. If we fail to establish such standards or are 

unable to implement them effectively, our students will 

find themselves unprepared to work in the technologi-

cally sophisticated world in which they must compete.

2.  Computer Science as a Core 
Discipline

Our lives depend upon computer systems and the 

people who maintain them to keep us safe on the 

road and in air, help physicians diagnose and treat 

health care problems, and play a critical role in the 

development of many scientific advances. A funda-

mental understanding of computer science enables 

students to be both educated consumers of technol-

ogy and innovative creators capable of designing 

computing systems to improve the quality of life for 

all people.

Children of all ages love computing. When given the 

opportunity, young students enjoy the sense of mas-

tery and magic that programming provides. Older 

students are drawn to the combination of art, narra-

tive, design, programming, and sheer enjoyment that 

comes from creating their own virtual worlds. Blend-

ing computer science with other interests also pro-

vides rich opportunities for learning. Students with 

an interest in music, for example, can learn about dig-

ital music and audio. This field integrates electronics, 

several kinds of math, music theory, computer pro-

gramming, and a keen ear for what sounds beautiful, 

harmonious, or just plain interesting.

Computer science has also made possible profound 

leaps of innovation and imagination as it facilitates 

our efforts to solve pressing problems (for example, 

the prevention or cure of diseases, the elimination of 

world hunger). It expands our understanding of our-

selves as biological systems and of our relationship to 

the world around us. These advances, in turn, drive 

the need for educated individuals who can bring the 

power of computing to help solve complex problems.

It is no longer sufficient to wait until students are in 

college to introduce these concepts. All of today’s 

students will go on to live a life heavily influenced 

by computing, and many will work in fields that di-

rectly involve computing. They must begin to work 

with algorithmic problem solving and computational 

methods and tools in K–12.

2.1   Computer Science is Intellectually 
Important

The invention of the computer in the 20th century was 

a “once in a millennium” event, comparable in impor-

tance to the development of writing or the printing 

press. Computers are fundamentally different from 

other technological inventions in that they directly aug-

ment human thought, rather than, say, the functions of 

our muscles or our senses. Computers have enormous 

impact on the way we live, think, and act. It is hard 

to overestimate their importance in the future. In fact, 

many believe that the true computer revolution will 

not happen until everyone can understand the technol-

ogy well enough to use it in truly innovative ways.

So why is it important to study computer science? 

We live in a digitized, computerized, programmable 

world, and to make sense of it, we need computer sci-



csta k–12 computer science standards  •  3

ence. An engineer using a computer to design a bridge 

must understand how the maximum capacity esti-

mates were computed and how reliable they are. An 

educated citizen using a voting machine or bidding in 

an online auction should have a basic understanding 

of the underlying algorithms of such conveniences, as 

well as the security and privacy issues that arise when 

information is transmitted and stored digitally.

Computer science students learn logical reasoning, 

algorithmic thinking, design and structured prob-

lem solving—all concepts and skills that are valu-

able well beyond the computer science classroom. 

Students gain awareness of the resources required to 

implement, test, and deploy a solution and how to 

deal with real-world constraints. These skills are ap-

plicable in many contexts, from science and engineer-

ing to the humanities and business, and they have 

enabled deeper understanding in these and other 

areas. Computer simulations are essential to the dis-

covery and understanding of the fundamental rules 

that govern a wide variety of systems from how ants 

gather food to how stock markets behave. Computer 

science is also one of the leading disciplines helping 

us understand how the human mind works, one of 

the great intellectual challenges of all time. Thus, 

much computer-enabled innovation lies ahead of us 

and computer science is an essential tool for achiev-

ing our vast potential.

2.2   Computer Science Leads to Multiple 
Career Paths

The vast majority of careers in the 21st century will 

require an understanding of computer science. Many 

jobs that today’s students will have in 10 to 20 years 

haven’t been invented yet. Professionals in every 

discipline—from artists and entertainers, to com-

munications and health care professionals, to fac-

tory workers, small business owners, and retail store 

staff—need to understand computing to be produc-

tive and competitive in their fields. Thomas Fried-

man, in his best-selling book The World is Flat (2006), 

argues that our economy most needs “Versatilists,” 

people who have expertise both in some domain 

and in technology. Computer science is the glue that 

makes it possible for Versatilists to bridge domain-

specific expertise and technological innovation.

There is an unmistakable link between success, in-

novation, and computer science. Movies like The In-

credibles and Lord of the Rings exemplify the creative 

use of new computing techniques. But it is hard to 

imagine any field that has not been impacted by 

computer science. Computing professionals are solv-

ing challenges in the sciences, business, art, and the 

humanities and creating new career opportunities in 

all of these fields.

Studying computer science can prepare a student 

to enter many career areas, both within and outside 

of computing. Professionals with computer science 

training have never been more in demand than they 

are today. Computing scientists are working with 

experts in other fields, designing and building com-

puter systems that support the functioning of mod-

ern society and are enabling us to tackle the critical 

challenges that face our world. These challenges in-

clude global energy, healthcare, and world hunger. 

In addition, computing skills are now preferred, if 

not required, for work in almost any profession.

2.3   Computer Science Teaches Problem 
Solving

Computer scientists work closely with business 

people, scientists, artists, and other experts to un-

derstand the issues, and to define the problem so ex-

plicitly that it can be represented in a computer. This 

cooperative process requires people with different 

expertise and perspectives to work together to clarify 

the issues while considering each other’s priorities 

and constraints.

Computer science teaches students to think about the 

problem-solving process itself. In computer science, 

the first step in solving a problem is to state it clearly 

and unambiguously. A computer scientist who helps 

to design a new computer system for a medical office, 

for example, has to take into account the current work 



4  •  csta k–12 computer science standards

flow, patient privacy concerns, training needs for 

new staff, current and upcoming technology, and of 

course, the budget. Once the problem is well defined, 

a solution must be created. Computer hardware and 

peripheral devices must be selected or built. Com-

puter programs must be designed, written, and test-

ed. Existing software systems and packages may be 

modified and integrated into the final system. In all 

phases, the computer scientist thinks about reflective 

use of computer time and shared resources. Building 

a system is a creative process that also requires sci-

entific thinking. With each fix of a bug or addition of 

a new feature, there’s a hypothesis that the problem 

has been solved. Experiments are designed, data are 

collected, results are analyzed, and if the hypothesis 

is untrue, the cycle repeats.

A computer scientist is concerned with the robust-

ness, the user-friendliness, the maintainability, and 

above all the correctness of computer solutions to 

business, scientific, and engineering problems. These 

issues often require both intense analysis and creativ-

ity. How will the system respond if the power goes 

out, or two nurses try to access the same patient re-

cord simultaneously, or the insurance company’s 

system is changed, or someone enters unexpected 

data into the system? Cooperation is again the key. 

The users and clients have to think about how the 

system will be used in day-to-day life and anticipate 

its use in the future. Computer scientists draw on 

their training and experience to confront problems 

and to create the best possible solutions.

2.4   Computer Science Supports and 
Links to Other Sciences

To solve the big scientific problems of the 21st cen-

tury, such as grappling with new diseases and cli-

mate change, we will need people with diverse skills, 

abilities, and perspectives. The sequencing of the hu-

man genome in 2001 was a landmark achievement of 

molecular biology, which would not have been pos-

sible without computer scientists. After short DNA 

fragments of the genome were sequenced in biology 

labs, computers were used to figure out how to piece 

the fragments together. This knowledge is paving the 

way for better computational methods of detecting 

and curing diseases, such as cancer, because we are 

now better able to simulate and hence understand 

the genetic mutations involved.

The human brain is complex and amazing. We know, 

for example, that an infant can effortlessly recognize 

a familiar face from many different viewpoints, and 

yet, we have a very poor understanding of the com-

putational mechanisms that the brain uses to solve 

such tasks. Inferring meaning from images is a com-

putational task, and computer scientists and neuro-

scientists are working together to figure out how to 

build computers that can process images and, ulti-

mately, how we can better understand intelligence 

itself. The use of modeling and simulation, visual-

ization, and management of massive data sets has 

fostered the emergence of a new field that bridges 

science, technology, engineering and math—compu-

tational science. This field integrates many aspects of 

computer science such as the design of algorithms 

and graphics with their application in the sciences.

In science classes, students use sophisticated simula-

tion software to make molecules and geological pro-

cesses come to life. Writing computer programs that 

model behavior allows scientists to generate results 

and test theories that are impossible to test in the 

physical world. Advances in weather prediction, for 

example, are largely dependent upon computer mod-

eling and simulation. Computational methods have 

also transformed fields such as statistics and chem-

istry. Scientists who can understand and contribute 

to technological innovation have a huge advantage. 

Good training for future scientists must therefore in-

clude a solid basis in computer science.

2.5   Computer Science Can Engage All 
Students

Computer science applies to virtually every aspect 

of life, so that it can be easily tied to myriad student 

interests. For example, students who are fascinated 

with specific technologies such as cell phones may 



csta k–12 computer science standards  •  5

have an innate passion for visual design, digital enter-

tainment, or helping society. K–12 computer science 

teachers can thus nurture students’ interests, passions, 

and sense of engagement with the world around them 

by offering opportunities for solving computational 

problems relevant to their own life experiences.

Excellence in computer science education relies on 

equitable practices that maximize the learning po-

tential of all students. Computer science learning 

opportunities must be shaped in ways that connect 

the canon of computer science content provided in 

the curricular standards to the lived experiences of 

diverse students. The equitable practices in computer 

science education that connect students with the cur-

riculum include:

•  All students should have access to rigorous 

and culturally meaningful computer science 

and be held to high expectations for interacting 

with the curriculum.

•  Diverse experiences, beliefs, and ways 

of knowing computer science should be 

acknowledged, incorporated, and celebrated in 

the classroom.

•  The integration of different interpretations, 

strategies, and solutions that are 

computationally sound enhance classroom 

discussions and deepen understandings.

•  The resources needed for teaching and 

learning computer science should be 

equitably allocated across groups of students, 

classrooms, and schools.

•  Classroom learning communities should foster 

an environment in which all students are 

listened to, respected, and viewed as valuable 

contributors to the learning process.

•  Ongoing teacher reflection about belief 

systems, assumptions, and biases support the 

development of equitable teaching practices.

Pedagogically, computer programming has the same 

relation to studying computer science as playing an 

instrument does to studying music or painting does 

to studying art. In each case, even a small amount 

of hands-on experience adds immensely to life-long 

appreciation and understanding, even if the student 

does not continue programming, playing, or painting 

as an adult. Although becoming an expert program-

mer, violinist, or oil painter demands much time and 

talent, we still want to expose every student to the 

joys of being creative. The goal for teaching computer 

science should be to get as many students as possible 

enthusiastically engaged with every assignment. We 

can provide students with the tools to design and 

write programs that control their cell phones or ro-

bots, create physics and biology simulations, or com-

pose music. Students will want to learn to use con-

ditionals, loops, parameters, and other fundamental 

concepts just to make these exciting things happen.

In a fast-paced field such as computer science, we are 

all challenged to keep up with our peers and our stu-

dents. Technology changes rapidly, and students are 

sometimes more likely than teachers to be familiar 

with the latest incarnations. No teacher should be ap-

prehensive of learning from her or his students. Real 

learning involves everyone in the room living with a 

sense of wonder and anticipation.

We know that teaching computer science involves 

some unique challenges and that none of us has 

all of the answers. The CSTA Source Web Reposi-

tory at http://csta.acm.org/WebRepository/Web 

Repository.html provides a comprehensive collection 

of resources for teachers. These resources have been 

found to be helpful in our attempts to better interest, 

engage, and motivate our students. Not all of them will 

be completely applicable to every classroom, but we 

believe that many contain useful and varied sugges-

tions that may inspire both students and teachers alike.

3. Defining the Terminology

Computer science is constantly being reshaped. New 

thinking and new technologies continue to expand 

our understanding of what computer scientists need 

to know. This has resulted in considerable debate 

concerning the definition of computer science itself. 

http://csta.acm.org/WebRepository/WebRepository.html
http://csta.acm.org/WebRepository/WebRepository.html


6  •  csta k–12 computer science standards

Before discussing K–12 curriculum standards, we first 

therefore clarify the context in which the standards 

are set as well as address some of the confusion cur-

rently swirling around the proliferation of terms used 

to describe the various kinds of computing education.

For secondary school educators, perhaps the most 

profound confusion arises when trying to distinguish 

between the three most common areas of computing 

education offered in schools. While each of these ar-

eas has been known by various names, for the pur-

poses of this discussion we call them:

•  Educational Technology

•  Information Technology, and

•  Computer Science.

Educational Technology can be defined as using com-

puters across the curriculum, or more specifically, 

using computer technology (hardware and soft-

ware) to learn about other disciplines. For example, 

the science teacher may use pre-existing computer 

simulations to provide students with a better under-

standing of specific physics principles, or an English 

teacher may use word-processing software to help 

students improve their editing and revision skills. 

While educational technology is concerned with us-

ing these tools, computer science is concerned with de-

signing, creating, testing, modifying, and verifying 

these tools.

Information technology (IT) is “the proper use of tech-

nologies by which people manipulate and share in-

formation in its various forms.” While Information 

Technology involves learning about computers, it 

emphasizes the technology itself. Information Tech-

nology specialists assume responsibility for select-

ing appropriate hardware and software products, 

integrating those products with organizational needs 

and infrastructure, and installing, customizing, and 

maintaining those resources. Information Technol-

ogy courses, therefore, focus on:

•  installing, securing, and administering 

computer networks;

•  installing, maintaining, and customizing 

software;

•  managing and securing data in physical and 

virtual worlds;

•  managing communication systems;

•  designing, implementing, and managing Web 

resources; and

•  developing and managing multimedia 

resources and other digital media.

IT is an applied field of study, driven by the practi-

cal benefits of its knowledge, while computer science 

adds scientific and mathematical, as well as practi-

cal, dimensions. Some of the practical dimensions of 

computer science are shared with IT, such as working 

with text, graphics, sound, and video. But while IT 

concentrates on learning how to use and apply these 

tools, computer science is concerned with learning 

how these tools are designed and why they work. 

Computer science and IT have a lot in common, but 

neither one is fully substitutable for the other. For ex-

ample, the complexity of algorithms is a fundamental 

idea in computer science but would probably not ap-

pear in an IT curriculum.

Computer Science, on the other hand, spans a wide 

range of computing endeavors, from theoretical 

foundations to robotics, computer vision, intelligent 

systems, and bioinformatics. The work of computer 

scientists is concentrated in three areas:

•  designing and implementing software,

•  developing effective ways to solve computing 

problems, and

•  devising new ways to use computers.

For the purposes of this document, we rely heavily 

on the definition of computer science provided in the 

original ACM/CSTA Model Curriculum for K–12 Com-

puter Science, as we believe that this definition of com-

puter science has the most direct relevance to high 

school computer science education.

“Computer science (CS) is the study of computers and 

algorithmic processes, including their principles, 



csta k–12 computer science standards  •  7

their hardware and software designs, their applica-

tions, and their impact on society.”

A basic understanding of computer science is now an 

essential ingredient to preparing high school gradu-

ates for life in the 21st century, and the goals of any 

rigorous computer science course should be to:

•  introduce the fundamental concepts of 

computer science to all students, beginning at 

the elementary school level,

•  present computer science at the secondary 

school level in a way that would be both 

accessible and worthy of an academic 

curriculum credit (e.g., math or science),

•  offer additional secondary-level computer 

science courses that will allow interested 

students to study it in depth and prepare them 

for entry into the work force or college, and

•  increase the knowledge of computer science 

for all students, especially those who are 

members of historically underrepresented 

groups in computer science.

Two other terms that often appear in discussions of 

computing education are Information Technology Lit-

eracy and Information Technology Fluency. A National 

Academy study published in 1999, defines IT fluency 

as something more comprehensive than IT literacy. 

Whereas IT literacy is the capability to use today’s 

technology in one’s own field, the notion of IT fluen-

cy adds the capability to independently learn and use 

new technology as it evolves throughout one’s pro-

fessional lifetime. Moreover, IT fluency also includes 

the active use of computational thinking (including 

programming) to solve problems, whereas IT literacy 

does not. Computational thinking is an approach to 

solving problems in a way that can be implemented 

with a computer. It involves the use of concepts, such 

as abstraction, recursion, and iteration, to process and 

analyze data, and to create real and virtual artifacts.

IT fluency was proposed as a minimum standard that 

all college students should achieve by the time they 

graduate. Most colleges and universities have imple-

mented these or similar standards and are expecting 

their graduates to achieve them. In this document, 

we strongly support the contention that this mini-

mum standard should be implemented at the K–12 

level as well.

4.  Organization of the Learning 
Outcomes: Levels and 
Strands

We propose a three-level model for K–12 computer 

science that addresses the needs of the present and 

future by building on the lessons of the past. It fo-

cuses on fundamental concepts with the following 

general goals:

 1.  The curriculum should prepare students to 

understand the nature of computer science 

and its place in the modern world.

 2.  Students should understand that computer 

science interweaves concepts and skills.

 3.  Students should be able to use computer 

science skills (especially computational 

thinking) in their problem-solving activities 

in other subjects.

 4.  The computer science standards should 

complement IT and AP computer science 

curricula in schools where they are currently 

offered.

If these standards are widely implemented and these 

goals are met, high school graduates will be prepared 

to be knowledgeable users and critics of computers, 

as well as designers and builders of computing ap-

plications that will affect every aspect of life in the 

21st century.

4.1  Levels

The CSTA Standards for K–12 computer science are 

based on a model where each of the three levels repre-

sent a specific set of grades and courses. Level 1 pro-

vides the learning standards for students in Grades 

K–6, Level 2 provides the learning standards for stu-



8  •  csta k–12 computer science standards

dents in Grades 6–9, and Level 3 provides the learn-

ing standards for students in each of three discrete 

courses in grades 9–12. (We note that the boundar-

ies specified for each Level will vary from school to 

school.) The overall structure of this model is shown 

in Figure 1.

Level 1 (recommended for grades K–6) Computer Sci-

ence and Me: Elementary school students are intro-

duced to foundational concepts in computer science 

by integrating basic skills in technology with simple 

ideas about computational thinking. The learning ex-

periences created from these standards should be in-

spiring and engaging, helping students see comput-

ing as an important part of their world. They should 

be designed with a focus on active learning, creativ-

ity, and exploration and will often be embedded 

within other curricular areas such as social science, 

language arts, mathematics, and science.

Level 2 (recommended for grades 6–9) Computer Sci-

ence and Community: Middle school/junior high 

school students begin using computational thinking 

as a problem-solving tool. They begin to appreciate 

the ubiquity of computing and the ways in which 

computer science facilitates communication and col-

laboration. Students begin to experience computa-

tional thinking as a means of addressing issues rel-

evant, not just to them, but to the world around them. 

The learning experiences created from these stan-

dards should be relevant to the students and should 

promote their perceptions of themselves as proactive 

and empowered problem solvers. They should be de-

signed with a focus on active learning and explora-

tion and can be taught within explicit computer sci-

ence courses or embedded in other curricular areas 

such as social science, language arts, mathematics, 

and science.

Level 3 (recommended for grades 9–12) Applying 

concepts and creating real-world solutions: Level 3 

is divided into three discrete courses, each of which 

focuses on different facets of computer science as a 

discipline. Throughout these courses, students can 

master more advanced computer science concepts 

and apply those concepts to develop virtual and  

real-world artifacts. The learning experiences created 

from these standards should focus on the exploration 

of real-world problems and the application of 

computational thinking to the development of 

solutions. They should be designed with a focus 

on collaborative learning, project management, 

and effective communication. Level 3 includes the 

following courses:

Figure 1.
Organizing Structure for the 
Computer Science Standards



csta k–12 computer science standards  •  9

Level 3A: (recommended for grades 9 or 10) Computer 

Science in the Modern World: This course is recom-

mended for all students. Its goal is to solidify stu-

dents’ understanding of computer science principles 

and practices so that they can make informed choices 

and use appropriate computational tools and tech-

niques in whatever career they decide to pursue. They 

should also appreciate the breadth of computing and 

its influence in almost every aspect of modern life. 

Finally, they should understand the social and ethical 

impact of their various choices when using comput-

ing technology in their work and personal lives and 

the choices that have already been made for them by 

those who develop the technologies they use.

Level 3B: (recommended for grades 10 or 11) Com-

puter Science Concepts and Practices: This course is a 

more in-depth study of computer science and its re-

lation to other disciplines, and contains a significant 

amount of algorithmic problem solving and related 

activities. One way to realize this course is by follow-

ing the Computer Science Principles course (www.

apcsprinciples.org). Students should complete this 

course with a clear understanding of the application 

of computational thinking to real-world problems. 

They should also have learned how to work collab-

oratively to solve a problem and use modern collabo-

ration tools during that work.

Level 3C: (recommended for grades 11 or 12) Topics in 

Computer Science: This is an elective course that pro-

vides depth of study in one particular area of com-

puting. This may be, for example, an AP Computer 

Science A (AP, 2010) course, which offers depth of 

study in Java programming. Alternatively, this of-

fering may be a projects-based course focusing on 

a single facet of computing or a course that leads to 

professional computing certification.

4.2  Strands

Almost since its inception, computer science has been 

hampered by the perception that it focuses exclusive-

ly on programming. This misconception has been 

particularly damaging in grades K–12 where it often 

has led to courses that were exceedingly limited in 

scope and negatively perceived by students. It also 

fed into other unfortunate perceptions of computer 

science as a solitary pursuit, disconnected from the 

rest of the world and of little relevance to the interests 

and concerns of students.

We address these concerns by distinguishing five 

complementary and essential strands throughout 

all three levels in these standards. These strands are: 

computational thinking; collaboration; computing 

practice; computers and communication devices; 

and community, global, and ethical impacts. These 

strands not only demonstrate the richness of comput-

er science but also help organize the subject matter 

for students so that they can begin to perceive com-

puter science as more engaging and relevant, and as 

more than a solitary pursuit. Figure 2 shows these 

strands graphically.

The following subsections discuss how these five 

strands can help students enrich their understanding 

and mastery of computer science during their forma-

tive years. More detailed discussions appear later in 

this report.

4.2.1  Computational Thinking
We believe that computational thinking (CT) can be 

used across all disciplines to solve problems, design 

systems, create new knowledge, and improve under-

standing of the power and limitations of computing 

in the modern age. The study of computational think-

ing enables all students to better conceptualize, ana-

lyze, and solve complex problems by selecting and 

applying appropriate strategies and tools, both virtu-

ally and in the real world.

K–12 education is a highly complex, highly politi-

cized environment where multiple competing priori-

ties, ideologies, pedagogies, and ontologies all vie for 

attention. It is also subject to widely diverse expec-

tations, intense scrutiny, and diminishing resources. 

Any effort to achieve systemic change in this envi-

ronment requires a deep understanding of these real-

ities. Passionate debate about the nature of computer 

http://www.apcsprinciples.org
http://www.apcsprinciples.org


10  •  csta k–12 computer science standards

science or computational thinking may provide intel-

lectual stimulation for those in the computing fields. 

However, embedding computational thinking in 

grades K–12 requires a practical approach, grounded 

in an operational definition.

Developing an approach to computational think-

ing that is suitable for K–12 students is especially 

challenging in light of the fact that there is, as yet, 

no widely agreed upon definition of computational 

thinking. For the purposes of this document, we rely 

upon the definition developed during a series of 

workshops hosted by the International Society for 

Technology in Education (ISTE) and the Computer 

Science Teachers Association (CSTA) and reported 

by Barr and Stephenson (2011):

“CT is an approach to solving problems in a way that 

can be implemented with a computer. Students be-

come not merely tool users but tool builders. They 

use a set of concepts, such as abstraction, recursion, 

and iteration, to process and analyze data, and to cre-

ate real and virtual artifacts. CT is a problem-solving 

methodology that can be automated and transferred 

and applied across subjects. The power of computa-

tional thinking is that it applies to every other type of 

reasoning. It enables all kinds of things to get done: 

quantum physics, advanced biology, human–com-

puter systems, development of useful computational 

tools.”

Computational thinking is thus a problem-solving 

methodology that can interweave computer science 

with all disciplines, providing a distinctive means 

of analyzing and developing solutions to problems 

that can be solved computationally. With its focus on 

abstraction, automation, and analysis, computational 

thinking is a core element of the broader discipline of 

computer science and for that reason it is interwoven 

through these computer science standards at all lev-

els of K–12 learning.

4.2.2  Collaboration
Computer science is an intrinsically collaborative 

discipline. Significant progress is rarely made in 

computer science by one person working alone. 

Typically, computing projects involve large teams of 

computing professionals working together to design, 

code, test, debug, describe, and maintain software 

over time. New programming methodologies such 

as pair programming emphasize the importance of 

working together. Additionally, development teams 

working with discipline-specific experts ensure the 

computational solutions are appropriate, effective, 

Figure 2.
Strands in the Computer 
Science Standards



csta k–12 computer science standards  •  11

and efficient. Developing collaboration skills is thus 

an important part of these K–12 national computer 

science standards.

In elementary school, students can begin to work 

cooperatively with fellow students and teachers us-

ing technology. They learn to gather information and 

communicate with others using a variety of tradi-

tional and mobile communication devices. They also 

learn to use online resources and participate in col-

laborative problem solving activities. These collab-

orative activities continue into middle school, where 

students apply multimedia and productivity tools 

for group learning exercises. In secondary school, 

students enhance their collaborative abilities by par-

ticipating in teams to solve software problems that 

are relevant to their daily lives. Skills learned at this 

level can include teamwork, constructive criticism, 

project planning and management, and team com-

munication, all of which are considered necessary 21st 

Century skills (see Partnership for 21st Century Skills 

at p21.org).

4.2.3  Computing Practice and Programming
The use of computational tools is an essential part of 

computer science education at all levels. While this is 

traditionally branded as “Information Technology,” 

it is impossible to separate IT from the other four 

strands in computer science. Computing practice at 

the K–12 level must therefore include the ability to 

create and organize webpages, explore the use of 

programming in solving problems, select appropri-

ate file and database formats for a particular com-

putational problem, and use appropriate Applica-

tion Program Interfaces (APIs), software tools, and 

libraries to help solve algorithmic and computational 

problems.

By the time they reach high school and are selecting 

career or educational paths, students should be well 

informed about their options so that they can make 

intelligent decisions. K–12 students must therefore be 

introduced to the variety of careers that exist in com-

puting or to which computing makes a significant 

contribution. Because computing is often misper-

ceived as only programming, it is especially impor-

tant for students to understand the broad array of op-

portunities computer science knowledge can provide 

across every field and discipline.

4.2.4  Computer and Communications Devices
K–12 students at all levels should understand the 

elements of modern computer and communication 

devices and networks. They should also understand 

how the Internet facilitates global communication 

and how to practice good Internet citizenship. Stu-

dents should also use appropriate and accurate ter-

minology when communicating about technology

At the elementary school level, students are intro-

duced to many devices and media that can assist 

them with their learning activities, both within com-

puter science and in other disciplines. Middle school 

students begin discriminating among different devic-

es and their uses. They should also be able to describe 

the basic components of computers and computer 

networks. For instance, they should understand the 

organization of webpages, URLs, and search engines. 

Secondary school students should understand com-

putational devices in more detail, learning to form 

abstract ideas about specific components (e.g., input, 

output, processors, and databases) and their roles in 

the computational spectrum. Students should also 

understand why a compiler translates software into 

a machine-executable form.

4.2.5  Community, Global, and Ethical Impacts
The ethical use of computers and networks is a fun-

damental aspect of computer science at all levels and 

should be seen as an essential element of both learn-

ing and practice. As soon as students begin using the 

Internet, they should learn the norms for its ethical 

use. Principles of personal privacy, network security, 

software licenses, and copyrights must be taught at 

an appropriate level in order to prepare students to 

become responsible citizens in the modern world. 

Students should be able to make informed and ethi-

cal choices among various types of software such 

as proprietary and open source and understand the 

importance of adhering to the licensing or use agree-

http://p21.org


12  •  csta k–12 computer science standards

ments. Students should also be able to evaluate the 

reliability and accuracy of information they receive 

from the Internet.

Computers and networks are a multicultural phe-

nomenon that effect society at all levels. It is essential 

that K–12 students understand the impact of com-

puters on international communication. They should 

learn the difference between appropriate and inap-

propriate social networking behaviors. They should 

also appreciate the role of adaptive technology in the 

lives of people with various disabilities.

Computing, like all technologies, has a profound im-

pact on any culture into which it is placed. The distri-

bution of computing resources in a global economy 

raises issues of equity, access, and power. Social and 

economic values influence the design and develop-

ment of computing innovations. Students should be 

prepared to evaluate the various positive and nega-

tive impacts of computers on society and to identify 

the extent to which issues of access (who has access, 

who does not, and who makes the decisions about 

access) impact our lives.

5.  Comprehensive Computer 
Science Standards for K–12

Drawing from the understandings and contexts de-

scribed in earlier sections, this section defines new 

standards for K–12 computer science education, pre-

senting them in a learning objective-based format 

that identifies the specific computer science concepts 

and skills students should achieve at each of the three 

levels (grades K–6, 6–9, and 9–12).

5.1  Level 1:  Computer Science and Me 
(L1)

These standards introduce elementary school stu-

dents to foundational concepts in computer science 

by integrating basic skills in technology with basic 

concepts about computational thinking. The learning 

experiences created from these standards should be 

inspiring and engaging, helping students see com-

puting as an important part of their world. They 

should be designed with a focus on active learning, 

creativity, and exploration and will typically be em-

bedded within other curricular areas such as social 

science, language arts, mathematics, and science.

It is important to recognize the significant impact 

that an early exposure to the five strands described 

in the previous section can have as students prog-

ress toward higher level computer science programs. 

K–6 students need to learn how computing tools 

can be used to help solve problems, communicate 

with others, and access and organize information 

by themselves or in collaboration with others. They 

need to begin to explore issues concerning the valid-

ity and value of different information sources. They 

must also learn to be responsible citizens in the ever-

changing digital world. Ethical and safe uses of com-

puters and networks should be introduced to even 

our youngest students.

We agree with teachers who believe that students at 

this age ought to begin thinking algorithmically as 

a general problem-solving strategy. Thus, it makes 

sense to develop more teaching strategies that encour-

age students to engage in the process of visualizing or 

acting out an algorithm. Seymour Papert’s pioneering 

experiments in the 1970s corroborate this belief, and 

his seminal work Mindstorms and related curricula 

provide many more examples of how elementary stu-

dents can be engaged in algorithmic thinking. This 

engagement can be accomplished with or without the 

use of computing devices as in the following examples:

•  finding your way out of a maze (Turtle 

graphics, robotics),

•  a dog retrieving a thrown ball,

•  baking cookies,

•  going home from school,

•  making a sand castle, and

•  arranging a list of words in alphabetical order.

Any of the activities designed to introduce K–6 

students to the five strands can involve individuals 



csta k–12 computer science standards  •  13

working alone or in collaboration with their peers. 

The concept of “team” is one that can be introduced at 

any grade level. Students working together can find 

multiple solutions to problems utilizing the resources 

available through online searches and then create 

multimedia presentations as a way of demonstrating 

their chosen solution. As they are developing these 

skills, they can start to become more aware of the many 

tools and programs that can be used to communicate 

with each other, their teachers, their parents, and even 

students in far away places. They will begin to think 

about how computers and programs work together to 

make things happen as they do.

As K–6 students are exposed to the many facets of 

communications and social networking through 

technology, it is essential that they learn the safe 

and ethical way to use these tools and the potential 

repercussions of their improper use. They can 

explore the many ways in which computing devices 

and technology impact their lives and the society 

around them.

Following are the standards that all students in 

Grades K–6 should meet in the five strands:

Computational Thinking: (CT)
Grades K–3 (L1:3.CT)

The student will be able to:

 1.  Use technology resources (e.g., puzzles, 

logical thinking programs) to solve age-

appropriate problems.

 2.  Use writing tools, digital cameras, and 

drawing tools to illustrate thoughts, ideas, 

and stories in a step-by-step manner.

 3.  Understand how to arrange (sort) 

information into useful order, such as sorting 

students by birth date, without using a 

computer.

 4.  Recognize that software is created to control 

computer operations.

 5.  Demonstrate how 0s and 1s can be used to 

represent information.

Grades 3–6 (L1:6.CT)

The student will be able to:

 1.  Understand and use the basic steps in 

algorithmic problem-solving (e.g., problem 

statement and exploration, examination of 

sample instances, design, implementation, 

and testing).

 2.  Develop a simple understanding of an 

algorithm (e.g., search, sequence of events, or 

sorting) using computer-free exercises.  

 3.  Demonstrate how a string of bits can be used 

to represent alphanumeric information.

 4.  Describe how a simulation can be used to 

solve a problem.

 5.  Make a list of sub-problems to consider while 

addressing a larger problem.

 6.  Understand the connections between 

computer science and other fields.

Collaboration (CL)
Grades K–3 (L1:3.CL)

The student will be able to:

 1.  Gather information and communicate 

electronically with others with support 

from teachers, family members, or student 

partners.

 2.  Work cooperatively and collaboratively with 

peers, teachers, and others using technology.

Grades 3–6 (L1:6.CL)

The student will be able to:

 1.  Use productivity technology tools (e.g., 

word processing, spreadsheet, presentation 

software) for individual and collaborative 

writing, communication, and publishing 

activities. 

 2.  Use online resources (e.g., email, online 

discussions, collaborative web environments) 

to participate in collaborative problem-

solving activities for the purpose of 

developing solutions or products.  



14  •  csta k–12 computer science standards

 3.  Identify ways that teamwork and 

collaboration can support problem solving 

and innovation.

Computing Practice and Programming (CPP)
Grades K–3 (L1:3.CPP)

The student will be able to:

 1.  Use technology resources to conduct age-

appropriate research.

 2.  Use developmentally appropriate 

multimedia resources (e.g., interactive 

books and educational software) to support 

learning across the curriculum.

 3.  Create developmentally appropriate 

multimedia products with support from 

teachers, family members, or student 

partners.

 4.  Construct a set of statements to be acted 

out to accomplish a simple task (e.g., turtle 

instructions).

 5.  Identify jobs that use computing and 

technology.

 6.  Gather and organize information using 

concept-mapping tools.

Grades 3–6 (L1:6.CPP)

The student will be able to:

 1.  Use technology resources (e.g., calculators, 

data collection probes, mobile devices, videos, 

educational software, and web tools) for 

problem-solving and self-directed learning.

 2.  Use general-purpose productivity tools and 

peripherals to support personal productivity, 

remediate skill deficits, and facilitate 

learning.  

 3.  Use technology tools (e.g., multimedia and 

text authoring, presentation, web tools, 

digital cameras, and scanners) for individual 

and collaborative writing, communication, 

and publishing activities.

 4.  Gather and manipulate data using a variety 

of digital tools.

 5.  Construct a program as a set of step-by-step 

instructions to be acted out (e.g., make a 

peanut butter and jelly sandwich activity).

 6.  Implement problem solutions using a block-

based visual programming language.

 7.  Use computing devices to access remote 

information, communicate with others in 

support of direct and independent learning, 

and pursue personal interests.

 8.  Navigate between webpages using 

hyperlinks and conduct simple searches 

using search engines.

 9.  Identify a wide range of jobs that require 

knowledge or use of computing.

 10.  Gather and manipulate data using a variety 

of digital tools.

Computers and Communications Devices (CD)
Grades K–3 (L1:3.CD)

The student will be able to:

 1.  Use standard input and output devices to 

successfully operate computers and related 

technologies.

Grades 3–6 (L1:6.CD)

The student will be able to:

 1.  Demonstrate an appropriate level of 

proficiency with keyboards and other input 

and output devices.

 2.  Understand the pervasiveness of computers 

and computing in daily life (e.g., voice 

mail, downloading videos and audio files, 

microwave ovens, thermostats, wireless 

Internet, mobile computing devices, GPS 

systems).

 3.  Apply strategies for identifying simple 

hardware and software problems that may 

occur during use.

 4.  Identify that information is coming to the 

computer from many sources over a network.

 5.  Identify factors that distinguish humans 

from machines.



csta k–12 computer science standards  •  15

 6.  Recognize that computers model intelligent 

behavior (as found in robotics, speech 

and language recognition, and computer 

animation).

Community, Global, and Ethical Impacts (CI)
Grades K–3 (L1:3.CI)

The student will be able to:

 1.  Practice responsible digital citizenship 

(legal and ethical behaviors) in the use of 

technology systems and software.

 2.  Identify positive and negative social and 

ethical behaviors for using technology.

Grades 3–6 (L1:6.CI)

The student will be able to:

 1.  Discuss basic issues related to responsible 

use of technology and information, and the 

consequences of inappropriate use.

 2.  Identify the impact of technology (e.g., 

social networking, cyber bullying, 

mobile computing and communication, 

web technologies, cyber security, and 

virtualization) on personal life and society.

 3.  Evaluate the accuracy, relevance, 

appropriateness, comprehensiveness, and 

biases that occur in electronic information 

sources.  

 4.  Understand ethical issues that relate to 

computers and networks (e.g., equity of 

access, security, privacy, copyright, and 

intellectual property).

5.2  Level 2: Computer Science and 
Community (L2)

The learning expectations covered by these stan-

dards support middle school/junior high school 

students in the use of computational thinking as 

a problem-solving tool. They begin to appreciate 

the ubiquity of computing and the ways in which 

computer science facilitates communication and 

collaboration. Students begin to experience compu-

tational thinking as a means of addressing issues 

relevant, not just to them, but to the world around 

them. The learning experiences created from these 

standards should be relevant to the students and 

should promote their perceptions of themselves as 

proactive and empowered problem solvers within 

their community. They should be designed with a 

focus on active learning and exploration that can be 

taught either as an explicit computer science course 

or as units embedded in other curricular areas such 

as social science, language arts, mathematics, and 

science.

The Level 2 curriculum standards assume that stu-

dents already have been introduced to the computa-

tional thinking concepts of data representation, algo-

rithms, and problem solving; and that they have had 

experience using technology tools and resources for 

learning, creating digital artifacts, and collaborating. 

Students should also have learned about the many 

careers that use computing and technology, standard 

input/outut devices and computers, basic computer 

terminology, and the principles of acting responsibly 

and ethically when using computers independently 

and working with others.

Lower secondary school students are developing 

socially and emotionally. They interact in larger 

social spheres than elementary students and are 

transitioning from a focus on self to group-oriented 

behaviors. Their social spheres are growing beyond 

the nuclear family to include fellow students, peer 

groups, teachers, coaches and other community 

members. Acknowledging these shifts, the focus at 

Level 2 is on using computers and computation as 

both individuals and community members. In this 

way, students begin to experience computational 

thinking as a means of communicating with others 

and as a means to address community-relevant 

issues.

The goals of the Level 2 curriculum are to engage stu-

dents in using computational thinking as a problem-

solving tool, teach them to use programming con-

cepts and methods while creating digital artifacts, 



16  •  csta k–12 computer science standards

and retain their interest in computing as a relevant 

and exciting field. Learning opportunities should be 

presented in ways that are active, connected, and rel-

evant to them, and should promote the perception 

of themselves as proactive and empowered problem 

solvers, creators, and innovators capable of changing 

the world. Collaborative learning experiences at this 

level should prepare students to work in teams and 

to build supportive partnerships.

As students begin to master fundamental computer 

science concepts and practices, it is vitally impor-

tant that they learn that these concepts and practices 

empower them to create innovations, tools, and ap-

plications. Students should also know that with this 

knowledge and access comes responsibility, so issues 

of ethical and responsible use of computing and infor-

mation are also essential elements of this curriculum.

Here are the standards that all students in Grades 6–9 

should meet in the five strands:

Computational Thinking: (CT)
The student will be able to:

 1.  Use the basic steps in algorithmic problem-

solving to design solutions (e.g., problem 

statement and exploration, examination of 

sample instances, design, implementing a 

solution, testing, evaluation).

 2.  Describe the process of parallelization as it 

relates to problem solving.

 3.  Define an algorithm as a sequence of 

instructions that can be processed by a 

computer.

 4.  Evaluate ways that different algorithms may 

be used to solve the same problem.

 5.  Act out searching and sorting algorithms.

 6.  Describe and analyze a sequence of 

instructions being followed (e.g., describe 

a character’s behavior in a video game as 

driven by rules and algorithms).

 7.  Represent data in a variety of ways including 

text, sounds, pictures, and numbers.

 8.  Use visual representations of problem states, 

structures, and data (e.g., graphs, charts, 

network diagrams, flowcharts).

 9.  Interact with content-specific models and 

simulations (e.g., ecosystems, epidemics, 

molecular dynamics) to support learning and 

research.

 10.  Evaluate what kinds of problems can be 

solved using modeling and simulation.

 11.  Analyze the degree to which a computer 

model accurately represents the real world.

 12.  Use abstraction to decompose a problem into 

sub problems.

 13.  Understand the notion of hierarchy and 

abstraction in computing including high-

level languages, translation, instruction set, 

and logic circuits.

 14.  Examine connections between elements of 

mathematics and computer science including 

binary numbers, logic, sets and functions.

 15.  Provide examples of interdisciplinary 

applications of computational thinking.

Collaboration (CL)
The student will be able to:

 1.  Apply productivity/multimedia tools and 

peripherals to group collaboration and 

support learning throughout the curriculum.

 2.  Collaboratively design, develop, publish, 

and present products (e.g., videos, podcasts, 

websites) using technology resources that 

demonstrate and communicate curriculum 

concepts.

 3.  Collaborate with peers, experts, and others 

using collaborative practices such as pair 

programming, working in project teams, 

and participating in group active learning 

activities.

 4.  Exhibit dispositions necessary for 

collaboration: providing useful feedback, 

integrating feedback, understanding 

and accepting multiple perspectives, 

socialization.



csta k–12 computer science standards  •  17

Computing Practice & Programming (CPP)
The student will be able to:

 1.  Select appropriate tools and technology 

resources to accomplish a variety of tasks 

and solve problems.

 2.  Use a variety of multimedia tools and 

peripherals to support personal productivity 

and learning throughout the curriculum.

 3.  Design, develop, publish, and present 

products (e.g., webpages, mobile 

applications, animations) using technology 

resources that demonstrate and communicate 

curriculum concepts.

 4.  Demonstrate an understanding of algorithms 

and their practical application.

 5.  Implement problem solutions using a 

programming language, including: looping 

behavior, conditional statements, logic, 

expressions, variables, and functions.

 6.  Demonstrate good practices in personal 

information security, using passwords, 

encryption, and secure transactions.

 7.  Identify interdisciplinary careers that are 

enhanced by computer science.

 8.  Demonstrate dispositions amenable to open-

ended problem solving and programming 

(e.g., comfort with complexity, persistence, 

brainstorming, adaptability, patience, 

propensity to tinker, creativity, accepting 

challenge).

 9.  Collect and analyze data that is output from 

multiple runs of a computer program.

Computers & Communications Devices (CD)
The student will be able to:

 1.  Recognize that computers are devices that 

execute programs.

 2.  Identify a variety of electronic devices that 

contain computational processors.

 3.  Demonstrate an understanding of the 

relationship between hardware and software.

 4.  Use developmentally appropriate, accurate 

terminology when communicating about 

technology.

 5.  Apply strategies for identifying and solving 

routine hardware problems that occur during 

everyday computer use.

 6.  Describe the major components and 

functions of computer systems and networks.

 7.  Describe what distinguishes humans from 

machines focusing on human intelligence 

versus machine intelligence and ways we can 

communicate.

 8.  Describe ways in which computers use 

models of intelligent behavior (e.g., robot 

motion, speech and language understanding, 

and computer vision).

Community, Global, and Ethical Impacts (CI)
The student will be able to:

 1.  Exhibit legal and ethical behaviors when 

using information and technology and 

discuss the consequences of misuse.

 2.  Demonstrate knowledge of changes in 

information technologies over time and the 

effects those changes have on education, the 

workplace, and society.

 3.  Analyze the positive and negative impacts of 

computing on human culture.

 4.  Evaluate the accuracy, relevance, 

appropriateness, comprehensiveness, 

and bias of electronic information sources 

concerning real-world problems.

 5.  Describe ethical issues that relate to 

computers and networks (e.g., security, 

privacy, ownership, and information sharing).

 6.  Discuss how the unequal distribution of 

computing resources in a global economy 

raises issues of equity, access, and power.

5.3  Level 3:  Applying Concepts and 
Creating Real-World Solutions (L3)

Level 3 is divided into three discrete courses, each of 

which focuses on a different aspect of computer sci-



18  •  csta k–12 computer science standards

ence as a discipline. Throughout these courses, stu-

dents will learn advanced computer science concepts 

and apply those concepts to develop virtual and 

real-world artifacts. The learning experiences created 

from these standards should focus on the exploration 

of real-world problems, the application of computa-

tional thinking to the development of problem solu-

tions, and the interconnections between computer 

science and other academic subjects. These experi-

ences should also include a focus on collaborative 

learning and effective communication.

Level 3 includes the following courses:

3A: Computer Science in the Modern World (MW)

3B: Computer Science Principles (CP)

3C: Topics in Computer Science (TO)

Normally, course 3A will be a prerequisite for either 

of the other two. The following sections describe 

these three courses in more detail. These courses 

have been designed under the assumption that they 

are year-long courses. Schools unable to offer them as 

year-long courses may need to adjust the number of 

standards that can be covered.

5.3.A   Computer Science in the Modern 
World (MW)

Computer Science in the Modern World is a course de-

signed to expose all students to the interdisciplinary 

nature of computer science in today’s dynamic and 

globally connected society. Students will have the 

opportunity to explore the uses of computer science 

as a tool in creating effective solutions to complex 

contemporary problems. The hands-on nature of the 

course is intended to provide students with the op-

portunity to explore conceptual understanding in a 

practical learning environment. This course is recom-

mended for all students as it provides an overview 

of computer sciences and its applications in various 

disciplines, professions, and personal activities.

In this course, students will learn to use computa-

tional thinking to develop algorithmic solutions to 

real-world problems. They will begin to understand 

the different levels of complexity in problem solving 

and to determine when team projects might gener-

ate more effective problem solutions than individual 

efforts. Students will learn and use a programming 

language(s) and related tools, as well as appropriate 

collaboration tools, computing devices, and network 

environments. Finally, they will demonstrate an un-

derstanding of the social and ethical implications of 

their work and exhibit appropriate communication 

behavior when working as a team member.

Computer Science in the Modern World is a course de-

signed for all students at the 9th and 10th grade levels. 

This course is built around the essential skills that all 

high school students should have upon graduation. 

It also provides the necessary skills needed for more 

advanced studies at levels 3.B and 3.C. It is recom-

mended that this course be required of all students.

Computational Thinking (CT)
The student will be able to:

 1.  Use predefined functions and parameters, 

classes and methods to divide a complex 

problem into simpler parts.

 2.  Describe a software development process 

used to solve software problems (e.g., design, 

coding, testing, verification).

 3.  Explain how sequence, selection, iteration, 

and recursion are building blocks of 

algorithms.

 4.  Compare techniques for analyzing massive 

data collections.

 5.  Describe the relationship between binary and 

hexadecimal representations.

 6.  Analyze the representation and trade-offs 

among various forms of digital information.

 7.  Describe how various types of data are 

stored in a computer system.

 8.  Use modeling and simulation to represent 

and understand natural phenomena.

 9.  Discuss the value of abstraction to manage 

problem complexity.



csta k–12 computer science standards  •  19

 10.  Describe the concept of parallel processing as 

a strategy to solve large problems.

 11.  Describe how computation shares features 

with art and music by translating human 

intention into an artifact.

Collaboration (CL)
The student will be able to:

 1.  Work in a team to design and develop a 

software artifact.

 2.  Use collaborative tools to communicate 

with project team members (e.g., discussion 

threads, wikis, blogs, version control, etc.).

 3.  Describe how computing enhances 

traditional forms and enables new forms of 

experience, expression, communication, and 

collaboration

 4.  Identify how collaboration influences 

the design and development of software 

products.

Computing Practice and Programming (CPP)
The student will be able to:

 1.  Create and organize Web pages through the 

use of a variety of web programming design 

tools.

 2.  Use mobile devices/emulators to design, 

develop, and implement mobile computing 

applications.

 3.  Use various debugging and testing methods 

to ensure program correctness (e.g., test 

cases, unit testing, white box, black box, 

integration testing)

 4.  Apply analysis, design, and implementation 

techniques to solve problems (e.g., use one or 

more software lifecycle models).

 5.  Use Application Program Interfaces (APIs) 

and libraries to facilitate programming 

solutions.

 6.  Select appropriate file formats for various 

types and uses of data.

 7.  Describe a variety of programming 

languages available to solve problems and 

develop systems.

 8.  Explain the program execution process.

 9.  Explain the principles of security by 

examining encryption, cryptography, and 

authentication techniques.

 10.  Explore a variety of careers to which 

computing is central.

 11.  Describe techniques for locating and 

collecting small and large-scale data sets.

 12.  Describe how mathematical and statistical 

functions, sets, and logic are used in 

computation.

Computers and Communications Devices (CD)
The student will be able to:

 1.  Describe the unique features of computers 

embedded in mobile devices and vehicles 

(e.g., cell phones, automobiles, airplanes).

 2.  Develop criteria for purchasing or upgrading 

computer system hardware.

 3.  Describe the principal components of 

computer organization (e.g., input, output, 

processing, and storage).

 4.  Compare various forms of input and output.

 5.  Explain the multiple levels of hardware and 

software that support program execution 

(e.g., compilers, interpreters, operating 

systems, networks).

 6.  Apply strategies for identifying and solving 

routine hardware and software problems 

that occur in everyday life.

 7.  Compare and contrast client-server and peer-

to-peer network strategies.

 8.  Explain the basic components of computer 

networks (e.g., servers, file protection, 

routing, spoolers and queues, shared 

resources, and fault-tolerance).

 9.  Describe how the Internet facilitates global 

communication.

 10.  Describe the major applications of artificial 

intelligence and robotics.



20  •  csta k–12 computer science standards

Community, Global, and Ethical Impacts (CI)
The student will be able to:

 1.  Compare appropriate and inappropriate 

social networking behaviors.

 2.  Discuss the impact of computing technology 

on business and commerce (e.g., automated 

tracking of goods, automated financial 

transactions, e-commerce, cloud computing).

 3.  Describe the role that adaptive technology 

can play in the lives of people with special 

needs.

 4.  Compare the positive and negative 

impacts of technology on culture (e.g., 

social networking, delivery of news and 

other public media, and intercultural 

communication).

 5.  Describe strategies for determining the 

reliability of information found on the 

Internet.

 6.  Differentiate between information access and 

information distribution rights.

 7.  Describe how different kinds of software 

licenses can be used to share and protect 

intellectual property.

 8.  Discuss the social and economic implications 

associated with hacking and software piracy.

 9.  Describe different ways in which software 

is created and shared and their benefits and 

drawbacks (commercial software, public 

domain software, open source development).

 10.  Describe security and privacy issues that 

relate to computer networks.

 11.  Explain the impact of the digital divide on 

access to critical information.

5.3.B   Computer Science Concepts and 
Practices (CP)

Computer Science Concepts and Practices is a follow-up 

course to Computer Science in the Modern World. It is de-

signed to harness the interests of those students wish-

ing to further enhance their studies in the computing 

fields. In this course, students will begin to develop 

higher-level computing skills and apply them to a va-

riety of subjects and disciplines. Students will learn 

how computer science impacts society and promotes 

change. Through the analysis of global issues, students 

will explore how computer science can help solve real-

world problems using innovation, collaboration, and 

creativity. This course will also provide students with 

an opportunity to explore Computer Science as a po-

tential career interest at the collegiate level.

In both its content and pedagogy, this course aims to 

appeal to a broad audience. In this course, students 

will begin to understand the central ideas of comput-

ing and computer science, focusing on the concepts 

and practices of computational and critical thinking 

and engaging in activities that show how computer 

science is helping to change the world. This rigorous 

course also engages students in the creative aspects 

of computer science.

Computer Science Concepts and Practices is designed as 

an elective course geared toward students in grades 

10 through 12. Students enrolled in this course 

should have previously completed Computer Science 

in the Modern World. Due to its mathematical content, 

students should also have completed at least Algebra 

I. This course should nevertheless be accessible to all 

students. Students with special interests in a concen-

trated area of computer science (such as networking, 

programming, game design, etc.) can continue their 

exploration through the courses outlined in Level 

3.C: Topics in Computer Science.

Computational Thinking (CT)
The student will be able to:

 1.  Classify problems as tractable, intractable, or 

computationally unsolvable.

 2.  Explain the value of heuristic algorithms 

to approximate solutions for intractable 

problems.

 3.  Critically examine classical algorithms and 

implement an original algorithm.

 4.  Evaluate algorithms by their efficiency, 

correctness, and clarity.



csta k–12 computer science standards  •  21

 5.  Use data analysis to enhance understanding 

of complex natural and human systems.

 6.  Compare and contrast simple data structures 

and their uses (e.g., arrays and lists).

 7.  Discuss the interpretation of binary 

sequences in a variety of forms (e.g., 

instructions, numbers, text, sound, image).

 8.  Use models and simulations to help formulate, 

refine, and test scientific hypotheses.

 9.  Analyze data and identify patterns through 

modeling and simulation.

 10.  Decompose a problem by defining new 

functions and classes.

 11.  Demonstrate concurrency by separating 

processes into threads and dividing data into 

parallel streams.

Collaboration (CL)
The student will be able to:

 1.  Use project collaboration tools, version 

control systems, and Integrated Development 

Environments (IDEs) while working on a 

collaborative software project.

 2.  Demonstrate the software life cycle process 

by participating on a software project team.

 3.  Evaluate programs written by others for 

readability and usability.

Computing Practice and Programming (CPP)
The student will be able to:

 1.  Use advanced tools to create digital 

artifacts (e.g., web design, animation, video, 

multimedia).

 2.  Use tools of abstraction to decompose a 

large-scale computational problem (e.g., 

procedural abstraction, object-oriented 

design, functional design).

 3.  Classify programming languages based on 

their level and application domain

 4.  Explore principles of system design in 

scaling, efficiency, and security.

 5.  Deploy principles of security by implementing 

encryption and authentication strategies.

 6.  Anticipate future careers and the 

technologies that will exist.

 7.  Use data analysis to enhance understanding 

of complex natural and human systems.

 8.  Deploy various data collection techniques for 

different types of problems.

Computers and Communications Devices (CD)
The student will be able to:

 1.  Discuss the impact of modifications on the 

functionality of application programs.

 2.  Identify and describe hardware (e.g., 

physical layers, logic gates, chips, 

components).

 3.  Identify and select the most appropriate file 

format based on trade-offs (e.g., accuracy, 

speed, ease of manipulation).

 4.  Describe the issues that impact network 

functionality (e.g., latency, bandwidth, 

firewalls, server capability).

 5.  Explain the notion of intelligent behavior 

through computer modeling and robotics.

Community, Global, and Ethical Impacts (CI)
The student will be able to:

 1.  Demonstrate ethical use of modern 

communication media and devices.

 2.  Analyze the beneficial and harmful effects of 

computing innovations.

 3.  Summarize how financial markets, 

transactions, and predictions have been 

transformed by automation.

 4.  Summarize how computation has 

revolutionized the way people build real and 

virtual organizations and infrastructures.

 5.  Identify laws and regulations that impact the 

development and use of software.

 6.  Analyze the impact of government 

regulation on privacy and security.



22  •  csta k–12 computer science standards

 7.  Differentiate among open source, freeware, 

and proprietary software licenses and their 

applicability to different types of software.

 8.  Relate issues of equity, access, and power to 

the distribution of computing resources in a 

global society.

5.3.C  Topics in Computer Science (TO)

At this level, interested and qualified students should 

be able to select one from among several electives to 

gain depth of understanding or special skills in par-

ticular areas of computer science. All of these elec-

tives will require the Level 3A course as a prerequi-

site, while some may require the Level 3B course as 

well. Most important, these courses provide students 

with an opportunity to explore topics of personal 

interest in greater depth, and thus prepare for the 

workplace or for further study at the post-secondary 

level.

These electives include, but are not necessarily 

limited to:

•  Advanced Placement (AP) Computer Science 

A,

•  A projects-based course in which students 

cover a topic in depth,

•  A vendor-supplied course, which may be 

related to professional certification.

These alternatives are discussed in more detail below.

5.3.C.1  AP Computer Science A
The Advanced Placement Computer Science cur-

riculum is well established (AP, 2010), and is offered 

at many secondary schools for students planning to 

continue their education in a two- or four-year col-

lege or university, possibly in computer science, busi-

ness, or a related field. The AP Computer Science A 

course emphasizes problem solving and algorithm 

development, and introduces elementary data struc-

tures. Students who complete this course and score 

well on the exam may qualify for one-semester of 

college credit. Students taking the AP Computer Sci-

ence A course should have completed Levels 1, 2, and 

3A. That is, they need to be familiar with the com-

putational/algorithmic concepts introduced at those 

levels. The Level 3B course provides an excellent 

foundation in computer science principles and may 

also be useful for students intending to take the AP 

Computer Science A course.

5.3.C.2  Projects-Based Courses
A projects-based course would be available to all stu-

dents who have completed the Level 1 and Level 2 

courses. Most project-based courses will also require 

completion of the Level 3A course. Some variants 

of this course would also require completion of the 

Level 3B course. A project-based course can be either 

a half-year or a full-year course.

The projects in this kind of course will naturally re-

flect diverse student interests and specific faculty 

expertise. The specific projects that are chosen from 

year to year will also evolve to reflect the ever-chang-

ing characteristics of computer science and informa-

tion technology. Ideally, each project should build 

upon basic computer science concepts and help stu-

dents develop professional skills in the application 

of technology. Schools should also consider offering 

project-based courses in conjunction with a local col-

lege or university to ensure currency and tap outside 

expertise.

While some of the project-based courses may be 

more skills-based, they must still be tied to the “be-

hind-the-scenes” activities of the software and other 

computer science principles in general. Making such 

connections enables students to problem solve when 

software does not perform as anticipated.

Here are some project-based courses that could meet 

the requirements of a Level 3C course.

Example: Desktop Publishing: This course introduces 

planning, page layout, and the use of templates to 

create flyers, documents, brochures, and newslet-

ters. Word processing and graphical editing fluency 

(Level 2) will help ensure student success. Methods 



csta k–12 computer science standards  •  23

of distribution of these documents in both written 

and electronic formats should be included. This will 

necessitate understanding of Internet concepts and 

network connectivity (Level 3A).

Example: Technical Communications: The ability to 

communicate and share ideas should be a core re-

quirement for all high school graduates. This type 

of project focuses on end-user documentation and 

researching and presenting technical information to 

non-technical individuals in oral, written, and mul-

timedia form. Fluency with word processing and 

presentation software and an understanding of com-

puter science and technology (Level 3A) is required.

Example: Multimedia: The use of multimedia has 

increased steadily at the user level, fueled by more 

efficient hardware and the availability of digital 

cameras and digital audio equipment. However, 

multimedia is often abused when incorporated into 

programs, webpages, and presentations. This proj-

ect will provide instruction in the use of digital au-

dio and video equipment and related editing soft-

ware. A major focus will be deploying multimedia 

in a responsible fashion. Basic software skills (Level 

2) and an understanding of multimedia concepts 

(Level 3A) are required.

Example: Graphics: This class explores bitmap and 

vector-based graphics. The discussion includes ben-

efits and limitations of each type of software and 

hands-on experience with both. CAD, CAM, and 3-D 

design software should be explored as well as bitmap 

software for creating and editing graphics. Avail-

ability of a digital camera and scanner is required. 

Responsible deployment of graphics including style 

and legal issues needs to be investigated. The discus-

sion of vector-based graphics will be facilitated by 

completion of Level 3A—limits of computers and de-

sign for usability.

Example: Game Programming: This course helps stu-

dents understand the creativity needed to program 

effectively and reinforces the software development 

cycle. Students plan, design, code, and test computer 

games. Basic programming skills and an understand-

ing of media (level 3B) are required.

Example: Computational Modeling: This course ex-

plores the computational modeling of complex sys-

tems. Using agent-based techniques, locally relevant 

issues such as the spread of disease, ecosystems, and 

traffic patterns can be modeled and investigated and 

efforts to ameliorate negative impacts can be de-

signed and tested virtually. In this course students 

will come to understand how interactions between 

individual elements (e.g., people, animals, or cars) 

and individuals and their environment can give rise 

to emergent, often unpredictable, patterns. Student 

project work includes abstracting a real-world issue 

or scenario, implementing a computational model 

by specifying the agents, interactions and environ-

ment in the model, and using automation to perform 

multiple runs of the simulation as an experimental 

testbed. Analysis of the model itself and the data it 

produces determine if and how the simulated world 

relates to the real world.

Example: Web Development: At several places in the 

curriculum students are exposed to Internet concepts 

and HTML. This course includes Cascading Style 

Sheets (CSS) and presents a more in-depth view of 

the design and development issues that need to be 

considered for a multi-platform international imple-

mentation. The standardization of webpage develop-

ment using the recommendations of the WWW Con-

sortium is one focus issue. Webpage development 

will include coding HTML and CSS using a text edi-

tor and utilizing simple scripts to enhance webpages.

Example: Web Programming: Students who have suc-

cessfully completed Levels 3A and 3B but do not 

wish to take an AP course might nevertheless enjoy 

applying their programming skills to the WWW. To 

be successful, a solid understanding of Internet con-

cepts, web development issues, and basic program-

ming concepts will be required. Topics in this course 

can include client-side and server-side scripting lan-

guages. Students will need to write scripts and de-

ploy them within webpages or on the web server.



24  •  csta k–12 computer science standards

Example: Emerging Technologies: This project can 

include several distinct topics, and its content is ex-

pected to change on a regular basis. Curriculum and 

materials for this topic would need to be developed 

from current resources on the web, perhaps in con-

junction with local colleges and universities, and 

with input from the professional sector of the Busi-

ness Community.

Example: Free and Open Source Software (FOSS) 

Development: Students who have successfully com-

pleted Level 3A may enroll in a course where they 

can contribute to an ongoing FOSS software project. 

Here, they might read code written by others, con-

tribute suggestions for new features, identify bugs, 

write user documentation, and learn to use modern 

collaborative technologies. Students would actively 

participate in project discussion threads. Examples 

of FOSS projects that are accessible to students are 

identified at http://hfoss.org.

Some other topics (along with their prerequisites) 

include:

•  The computer and animation (Level 3A)

•  Networking technologies (Level 3A)

•  Programming simulations (e.g., a computer-

controlled chemistry experiment) (Levels 3A 

and 3B)

•  Object-oriented design and coding (Level 3B)

•  Effective use of computer applications (Levels 

1 and 2)

5.3.C.3   Courses Leading to Industry 
Certification

Such a course is primarily geared toward students 

planning on entering the workforce, continuing their 

education in a post-secondary technical school, or 

entering a two-year college Associates of Applied 

Science program. Students taking this course should 

have completed Levels 1 and 2, and typically the Lev-

el 3A courses.

Industry certification provides a standard that is use-

ful to potential employers in evaluating a candidate 

who has no prior work experience. Industry certifica-

tions are either vendor-neutral or vendor-sponsored. 

Vendor-sponsored curricula need to be evaluated 

carefully. While rich in content, some of these cours-

es are structured to emphasize proprietary products 

rather than general concepts. Students who complete 

certification courses should be encouraged to take the 

corresponding exam as proof of acquired knowledge. 

Here are a few examples of vendor-neutral certifica-

tion programs.

Example: A+ Certified Technician: The CompTIA A+ 

certification is the industry standard for computer 

support technicians. The international, vendor-neu-

tral certification proves competence in areas such as 

installation, preventative maintenance, networking, 

security and troubleshooting (http://www.comptia. 

org/certifications/listed/a.aspx). Two different 

exams are available: CompTIA A+ Essentials and 

CompTIA A+ Practical Application. The use of criti-

cal thinking skills to problem-solve is necessary to 

troubleshoot and resolve problems. These skills re-

inforce and extend the concepts presented in Levels 

1, 2, and 3A.

Example: Quick Security+: The field of computer 

security is one of the fastest-growing disciplines in 

Information Technology. CompTIA Security+ is an 

international, vendor-neutral certification that dem-

onstrates competency in network security, threats and 

vulnerabilities, access control and identity manage-

ment, cryptography, and more (http://certification. 

comptia.org/getCertified/certifications/security.

aspx). These skills reinforce and extend the concepts 

presented in Levels 1, 2, and 3A.

Example: Certified Internet Webmaster (CIW): CIW’s 

core curriculum focuses on the foundational stan-

dards of the web, including web design, web develop-

ment and web security. CIW certifications verify that 

certified individuals have the skills to succeed in a 

technology-driven world (http://ciwcertified.com/

About_CIW/index.php). CIW curriculum is state-

endorsed in various areas of the country (http://ciw 

certified.com/About_CIW/Why_CIW/highschools.

http://www.comptia.org/certifications/listed/a.aspx
http://www.comptia.org/certifications/listed/a.aspx
http://certification.comptia.org/getCertified/certifications/security.aspx
http://certification.comptia.org/getCertified/certifications/security.aspx
http://certification.comptia.org/getCertified/certifications/security.aspx
http://ciwcertified.com/About_CIW/Why_CIW/highschools.php
http://ciwcertified.com/About_CIW/Why_CIW/highschools.php


csta k–12 computer science standards  •  25

php). The CIW Web Foundations exam requires 

competency in Internet business, web design, and 

networking fundamentals. Many of these concepts 

are introduced in Levels 1, 2, and 3A.

Find more detailed information about these and 

other certification programs, both vendor-specific 

and vendor-neutral, by searching the Web.

6. Implementation Challenges

We understand that many obstacles lie in the way of 

arriving at an ideal model of K–12 computer science 

education for all students. How will room be found 

in the jam-packed curriculum? How will qualified 

teachers be recruited, trained, and credentialed? In 

the world of standards-centric evaluation of schools, 

should computer science support existing standards, 

or should new ones be designed for computer science? 

These and other questions and challenges are signifi-

cant, but so are the benefits—to students and to soci-

ety—of computer science becoming as much a part of 

a high-quality education as other core disciplines.

Teaching any subject effectively depends on the ex-

istence of sound learning standards for students, 

explicit teacher certification standards; appropriate 

teacher training programs; effective curricular mate-

rials; and a core of teachers who are willing, able, and 

empowered to deliver the curriculum. K–12 comput-

er science education faces unique challenges along all 

of these lines.

The challenge of improving computer science edu-

cation is significant and will require attention and 

interventions from multiple institutions. Profes-

sional organizations in computer science can make 

an important contribution. CSTA, for example, is 

a professional organization that supports and pro-

motes the teaching of computer science and other 

computing disciplines. CSTA provides a large num-

ber of programs that include the development and 

dissemination of learning resources, the provision 

of professional development, and advocacy for state 

and federal level policies to improve computer sci-

ence education. Other organizations such as ACM, 

the IEEE Computer Society, institutions of higher 

education, and national and local teacher organiza-

tions can also work to address these issues in K–12 

computer science education. Industry is also deeply 

affected by pipeline issues and the scarcity of work-

ers who have the skills to support and build the 

technology tools of the future. It is therefore in their 

best interest to contribute significantly to improving 

access to the quality of computer science courses at 

the K–12 level.

For schools to widely implement these standards, 

work is needed in three important areas: teacher prep-

aration, state-level content standards, and curriculum ma-

terials development. In addition, persons in leadership 

positions must acknowledge the importance of com-

puter science education for the future of our society. 

States and accrediting organizations should make 

this a factor in their overall school accreditation pro-

cess. Some states have begun to establish computer 

science content standards, define models for teacher 

certification, provide in-service training in computer 

science, and experiment with developing new cur-

ricular materials. However, a much wider effort and 

commitment are now required.

Recently, efforts have increased to develop national 

and state content standards for computer science. 

Curriculum standards serve to define the skills and 

knowledge of the discipline to be acquired by every 

student. Content standards for computer science ed-

ucation within states must be developed and adopt-

ed in a way that parallels what has occurred in dis-

ciplines such as science, mathematics, and language 

arts. Curriculum content that is aligned with these 

standards can then be developed for the classroom.

In the design of state standards, it is important to 

ensure the distinction between the teaching of IT skills 

and the teaching of computer science itself. That is, 

computer science must be viewed as a distinct subject 

area and technology should be viewed as a tool  

that cuts across all subject areas. Existing technology 

http://ciwcertified.com/About_CIW/Why_CIW/highschools.php


26  •  csta k–12 computer science standards

standards, where present, should not be substituted 

for computer science standards. (For a comprehensive 

discussion of the ways in which states have failed to 

incorporate computer science standards into state 

standards in this way, see Running on Empty: The 

Failure to Teach K–12 Computer Science in the Digital 

Age at http://csta.acm.org/Communications/sub/

Documents.html.

7. Call to Action

Computer science is a mainstream discipline that 

can no longer be ignored by public schools in the 

21st century. The learning standards detailed in this 

document provide a basis by which states, schools of 

education, and individual school districts can begin 

to implement a coherent computer science curricu-

lum that is available to all students.

Much work needs to be done to translate these stan-

dards into teaching and laboratory materials that are 

pedagogically robust and culturally meaningful for 

all students. We hope state and federal departments 

of education, corporations, foundations, and other 

external stakeholders will support this work by pro-

viding appropriate incentives that will enable such a 

massive curriculum development effort to succeed.

Notes

http://csta.acm.org/Communications/sub/Documents.html
http://csta.acm.org/Communications/sub/Documents.html


csta k–12 computer science standards  •  27

8. Activities

In these activities, we illustrate the viability of this curriculum model by providing example activities for 

courses and modules that are now being taught in various schools throughout the world. The structure of these 

activities is explained below:

ACTIvITy: NAME OF ThE ACTIvITy

Time: Number of in-class hours to complete the activity

Description: Brief description of the subject and goals of the activity.

Level: 1, 2, or 3, as defined in this report (see Section 4.1)

Topics:  The topics at this level that are covered by this activity (see the topic lists in 

Sections 5.1, 5.2, and 5.3 of this report)

Prior Knowledge: What students should know before beginning this activity

Planning Notes: Suggestions to teachers for preparing this activity

Teaching/Learning Strategies: Organization of the in-class presentation and the particular student tasks

Assessment and Evaluation: Formative and summative assessments of in-class and laboratory work

Accommodations:  Additional supporting materials (e.g., scaffolding labs, example programs, 

challenging problems)

Resources: Links to the source of this activity, as well as other related activities

A.1  Sample Activities for Level 1

ACTIvITy: A MySTERy PLAy

Time: 8 hours

Description:  Students learn and act out a short mystery play. Other students use logic to 

solve the mystery.

Level: 1

Topics:  Understand the fundamental ideas of logic and its use for solving real-world 

problems

Prior Knowledge: Elements of logic (statements, truth and falsity), reading and speaking skills.

Planning Notes:

•  Students will need time to learn their parts and rehearse the play in advance.

Teaching/Learning Strategies: 

•  The play is about 20 minutes long. 

•  The setting is a classroom, so no special props or scenery are needed. 

Assessment and Evaluation: 

•  Students discuss the mystery and the reasoning they used to solve the mystery.

Accommodations:

Students receive copies of the play, which is 3 scenes and 4 pages long.



28  •  csta k–12 computer science standards

ACTIvITy: BATTLEShIPS

Time: 4 hours

Description:  Computers are often required to find information in large collections of data. 

They need to develop quick and efficient ways of doing this. This activity 

demonstrates three different search methods—linear search, binary search, and 

hashing—using numbered cards and the game of battleships as vehicles. 

Level: 1 (Grades 3–5)

Topics: Basic understanding of a search algorithm

Prior Knowledge: Mathematics; greater, less, and equal relationships, geometry (coordinates)

Planning Notes: Finding information efficiently—linear search, binary search, hashing

Teaching/Learning Strategies: 

•  15 children have cards with different numbers on them, arranged randomly and hidden from one of the 

children who tries to guess who holds a mystery number. The game is repeated after the 15 numbers are 

rearranged in order.

•  Children are grouped in pairs, and each pair is given two battleship game cards. The game is played 

using a simple hashing technique to locate the column of a ship on the card. 

Assessment and Evaluation: 

•  Discussions should explore the scores children achieved in each game. 

•  Discussions should also explore the advantages and disadvantages of each search strategy.

Accommodations:

Each child will need a battleships game card (copied from masters)

Resources: 

See http://csunplugged.org/ to learn more about this activity.

__________________________________________________________________________________________________

ACTIvITy: BEAT ThE CLOCK

Time: 4 hours

Description:  There is a limit to how fast computers can solve problems. One way to speed 

them up is to use several computers to solve different parts of a problem. This 

activity uses sorting networks to do several comparisons at the same time. 

Level: 1 (Grades K–2)

Topics: Understanding how to arrange (sort) information into useful order

Prior Knowledge: Grade 2 mathematics; greater than, less than

Planning Notes:

Some tasks can be done faster using fewer steps, while others can be done faster using parallel computation. 

Sorting networks is a good example of the latter.

Teaching/Learning Strategies: 

•  Six students hold one number each and arrange themselves on the left-hand side of the court. They move 

forward to the next circle in the network and wait for someone else to arrive. 

•  The circle is a decision point from which the student with the smaller number goes left and the larger 

number goes right. 

•  At the end, the numbers are sorted.



csta k–12 computer science standards  •  29

Assessment and Evaluation: 

•  Students successfully sort the numbers using the given network. 

•  They also discuss the use of other networks for sorting.

Accommodations: 

This is an outdoor group activity. Chalk, two sets of six cards with numbers on them, and a stop watch are 

needed. A master is used to draw a sorting network on the sidewalk.

Resources: 

See http://csunplugged.org/ to learn more about this activity.

__________________________________________________________________________________________________

ACTIvITy: COLOR By NuMBERS

Time: 3 hours

Description:  The computer stores drawings, photographs, text, and other pictures using only 

numbers. This activity demonstrates how that is done.

Level: 1 (Grades K–2)

Topics: Using 0s and 1s to represent information

Prior Knowledge: Grade 2 geometry (exploring shapes, counting, graphing)

Planning Notes:

•  Motivational discussion questions include, “What does a fax machine do?”

•  “In what situations would a computer want to store pictures?”

•  “How do computers store pictures when they can only use numbers?”

Teaching/Learning Strategies: 

•  A 5x6 rectangular grid is used as a basis for representing different images (such as letters) by coloring in 

some of the squares (pixels). 

•  Coding of the image is done by scanning the sequences of 1s (shaded squares) and 0s (non-shaded 

squares) in each row of the grid and recording the length of each sequence.

Assessment and Evaluation: 

Worksheet activities.

Accommodations:

No computers are required; students use two worksheet activities, called “Kid fax” and “Make your own 

picture”

Resources:

See http://csunplugged.org/ to learn more about this activity.



30  •  csta k–12 computer science standards

ACTIvITy: DANCING CAT

Time: 60 minutes

Description: Students construct a Scratch program to make a sprite dance.

Level: 1

Topics:  Recognize that software is created to control computer operations in a 

sequential manner.

Prior Knowledge:  Students should have a basic familiarity interacting with a computer and its 

input devices. 

Planning Notes:

In preparing for this activity, teachers should: 

•  Decide how he/she would like the cat sprite to “dance.” A sample dancing cat program is explained in 

the Getting Started Guide: http://scratched.media.mit.edu/resources/getting-started-guide.

•  Decide what concepts he/she would like to emphasize in his/her modeling of the activity. For example, if 

students are fairly new to programming and Scratch, the teacher can present how to drag and click blocks 

to make the cat sprite perform actions such as moving 10 steps.

Teaching/Learning Strategies: 

This activity involves the following steps: 

•  The teacher models the Dancing Cat activity for students. For example, the teacher can:

  Present how Scratch looks when it first opens, with the Blocks Palette on the left, the Scripts Area, and 

the Stage with the cat sprite.

  Drag a Move block from the Blocks Palette to the Scripts Area.

  Click on the Move block in the Scripts Area. Point out how the cat sprite moves 10 steps on the Stage. 

  Drag a Play Drum block from the Sound category and connect it to the Move block to create a stack of 

blocks or a script. Point out the white highlight that appears as you connect the two blocks. When a 

block is being dragged in the Scripts Area, the white highlight indicates where that block can make a 

valid connection.

  Click anywhere on the stack to run the script. Point out how the cat sprite moves 10 steps and then 

plays a drum sound. Scratch runs a script starting from the top of a stack. 

  Build the rest of the dance script with the Move and Play Drum blocks. To mimic the back and forth 

movement of dancing, enter -10 for the second Move block. After adding each new block, click on the 

stack and point out the new actions that the cat sprite performs on the stage. 

  Drag a Forever block from the Control category and connect it to the top of the stack, enclosing all the 

blocks. 

  Click on the stack again and point out how the sequence of actions repeat over and over again. 

  Drag the When Green Flag Clicked block from the Control category and connect it to the top of the 

stack. 

  Click on the Green Flag above the Stage. Point out how clicking on the Green Flag now runs the script. 

•  Students build their own Dancing Cat projects. The teacher should encourage them to experiment, 

finding new ways to express dancing or extending their program such as creating their own sprite. 

•  If there is time, students walk around and see each other’s work. Students may also do a show and tell, 

explaining their projects to their peers.

•  After students complete their projects, the teacher facilitates a discussion around some of the ways 

students programmed their sprite to dance.



csta k–12 computer science standards  •  31

Assessment and Evaluation:

•  If there is time for students to walk around or do a show and tell, students can describe their projects and 

their process in creating their scripts. They can also evaluate the scripts of their peers. 

•  In the closing discussion, students can articulate what they learned in creating their Scratch program. 

Accommodations:

While this activity can be carried out without any supplemental materials, the teacher may want to have the 

Getting Started Guide available for students to support them in the activity. 

Resources: 

•  Getting Started Guide: http://scratched.media.mit.edu/resources/getting-started-guide

•  ScratchEd: http://scratched.media.mit.edu/



32  •  csta k–12 computer science standards

ACTIvITy: ICE CREAM STAND 

Time: 4 hours

Description:  A graph is used to represent the map of a city. An ice cream company wants to 

build ice cream stands at different intersections, so that it is easy for people to 

get to them but not too many stands have to be built. 

Level: 1 (Grades 6–9)

Topics: Understand the graph as a tool for representing problem states and solutions

Prior Knowledge: Elementary map reading

Planning Notes:

•  Pass out copies of a map of a town, where lines represent streets and circles represent intersections.

Teaching/Learning Strategies: 

•  Children must determine the smallest number of stands to build so that no person has to walk to more 

than one intersection to buy ice cream.

Assessment and Evaluation: 

•  Children discuss different strategies for placing the stands, and they evaluate each other’s solutions.

Accommodations:

Copies of different city maps need to be handed out.

__________________________________________________________________________________________________

ACTIvITy: ThE ORANGE GAME

Time: 4 hours

Description:  This activity uses a simple game with oranges to illustrate Internet traffic 

management (routing) and deadlocks.

Level: 1 (Grades 3–6)

Topics: Simple algorithms for network routing 

Prior Knowledge: Math; logic and reasoning

Planning Notes:  This is a group activity, requiring five or more children sitting in a circle and 

having different letters on their shirts. There are two oranges for each child’s 

letter except one, for which there is only one orange.

Teaching/Learning Strategies: 

•  Every child is given an orange in each hand (except that one child has one orange) randomly. 

•  Oranges are passed between children until everyone has two oranges with his/her own letter. 

•  Only an empty hand can receive an orange, and only from an adjacent hand. 

Assessment and Evaluation: 

•  Children should learn that holding onto one’s own orange as soon as it is received may prevent the whole 

group from achieving its goal.

Accommodations:

•  A bag of oranges

Resources: 

See http://csunplugged.org/ to learn more about this activity.



csta k–12 computer science standards  •  33

ACTIvITy: yOu CAN SAy ThAT AGAIN

Time: 4 hours

Description:  Text can be compressed by taking advantage of patterns in words and linking 

repeating patterns to each other without rewriting them. For instance, “pitter 

patter” can be encoded by replacing the last instance of “tter” by a link to the 

first instance.

Level: 1 (Grades 3–6)

Topics: Develop a simple understanding of an algorithm

Prior Knowledge:  English, recognizing patterns in words, copying written text; basic familiarity 

with computers

Planning Notes:  Images and text containing millions of pieces of information are transmitted on 

the Internet every day. To save time and space, they are compressed into ZIP or 

GIF format before they are transmitted.

Teaching/Learning Strategies: 

•  Students successfully encode and decode text, using worksheets. 

•  They also discuss the kinds of texts and images that compress best/worst using this algorithm.

Assessment and Evaluation: 

•  Students’ completed worksheets are evaluated. 

Accommodations:

Four different worksheets are used to facilitate this activity; a transparency is used to present the compression 

algorithm.

Resources: 

See http://csunplugged.org/ to learn more about this activity.



34  •  csta k–12 computer science standards

A.2  Sample Activities for Level 2

ACTIvITy: CONNECTIONS INSIDE AND OuT 

Time: 3 hours and 40 minutes

Description:  Students view the video The Journey Inside the Computer (from Intel 

Corporation (http://educate.intel.com/en/thejourneyinside/) and examine 

the individual internal components of the computer. Using resources available 

to them, students discover the importance of each component and its impact 

on the computer’s operations. The activity culminates with a series of problems 

that students must solve using the new knowledge. Finally, students use 

this information to suggest an alternative placement of computers within the 

school environment that makes a positive impact on the school community and 

demonstrates wise use of resources.

Level: 2

Topics:  Students will gain a conceptual understanding of the principles of computer 

organization and the major components (input, output, memory, storage, 

processing, software, operating systems).

  Students will gain a conceptual understanding of the basic components of 

computer networks (servers, file protection, queues, routing protocols for 

connection, communication, spoolers and queues, shared resources, and fault-

tolerance).

Prior Knowledge: the differences between hardware and software:

 •  ability to record findings from observation,

 •  familiarity with the operating system they are using and the term network, 

and

 •  familiarity with internal components and their uses. 

Planning Notes:

•  Request permission for students to visit certain areas of the school during class time—plan this as an in-

school field trip.

•  Think of visiting a music midi lab, communication lab, front office, and any specialized resources specific 

to your local environment.

•  Check with the site administrator if you are not sure of network type(s) available in the school.

•  Prepare checklist of terms for student use during video.

•  Arrange to have a computer site administrator from the school or board office or a computer technician 

speak to the class about networks and operating systems 

•  Have a school map available for students to take on tour and an overhead of the map for review.

•  Check for materials from The Journey Inside the Computer kit available from Intel (Intel Corporation. 

The Journey Inside. Part of The Journey Inside Education kit.)

Teaching/Learning Strategies:

•  Show The Journey Inside the Computer video, Unit 4 on Microprocessors, then Unit 6 on Networking, 

with the purpose of reviewing computer components and extending student knowledge of networks and 

operating systems.

•  Take up terms sheet and have students complete definitions for words they are unfamiliar with (teachers 

may introduce students to the online dictionary at www.dictionary.com).



csta k–12 computer science standards  •  35

•  Share information on networks with students.

•  Indicate type(s) of networks currently used in the school environment.

•  Share information on operating systems with students.

•  Deliver short test on networks and operating systems.

•  Provide each student with a map of the school and explain tour route and any special routines required 

for secure areas.

•  Give students a simple key for marking on map (e.g., C = stand alone computer, L = lab, SL = specialized 

lab, S = server room, P = printer resource).

•  Return to the classroom and review the map on an overhead with input from students.

•  Encourage a discussion of how improvements that have been made in network and operating systems 

make a difference in a computer community such as a school.

•  Ask them to reflect on why they think the computer resources have been placed in the school the way 

they are.

•  Ask students to prepare a written brief of changes they would like to see in the school computer 

environment.

•  Direct students to include positive effects their suggestions have on the school environment and 

incorporate their knowledge of networks.

•  Facilitate student pair/square and share of suggestions.

Assessment/Evaluation Techniques: 

•  A formative assessment in use of the review terms sheet, and 

•  An evaluation of test on networks and operating systems.

Accommodations: 

•  Give an oral test if appropriate.

•  Provide students with physical disabilities assistance if required.

•  Assist students with special needs with terms sheet.



36  •  csta k–12 computer science standards

ACTIvITy: CuLTuRALLy SITuATED DESIGN TOOLS—WEAvING 

Time: 4 hours

Description:  In this lesson, students learn how computers can be used as a tool for 

visualizing data, modeling and design, and art in the context of culturally 

situated design tools. Connections between the design of the tools and 

mathematics will be explored.

Level: 2 

Topics:  Interact with content-specific models and simulations (e.g., ecosystems, 

epidemics, molecular dynamics) to support learning and research. Make 

the connection between elements of mathematics and computer science, 

including binary numbers, logic, sets and functions. Collaboratively design, 

develop, publish, and present products (e.g., video, podcasts, wikis, etc.) using 

technology resources that demonstrate and communicate curriculum concepts.

Prior Knowledge: Understanding of Cartesian coordinate system.

Planning Notes: 

•  Ensure that the Culturally Situated Design Tools website (csdt.rpi.edu) is available to all students

•  The bead loom tutorial is online. You can adapt the Pacific Northwest Basket Weaver and the Navajo Rug 

Weaver tool from the bead loom tutorial and provide printed copies.

•  Create rubric for project and provide it to students in advance

•  Review Cartesian coordinate system

Teaching/Learning Strategies:

•  Post the possible design tools:

  Virtual Bead Loom

  Pacific Northwest Basket Weaver

  Navajo Rug Weaver

•  Display the first page of each tool in order to give students an idea of what each does. (http://csdt.rpi.edu)

  Students divide into groups to work on the tool of their choice. Group sizes will depend on the size of 

the class. You may need to have more than one group per tool.

•  Each member of the group should go through the entire cultural background section individually.

  Answer any questions posed in the section in their journal.

  Look for and write down the mathematical connections.

• All group members discuss the section.

  Resolve answers to questions and mathematical connections.

•  Each member of the group completes the tutorial.

  Students should go through the tutorial at their own pace, but discuss with other members as questions arise. 

  Encourage students to record in their journal points that they want to remember.

•  Groups create designs using the design tool software.

  Each person should choose one of the goal pictures for practice and discuss any issues with the other 

group members.

  Groups decide whether they want to create one design as a group or have multiple designs for their 

presentation.

  Groups work on design(s)—these should be their own creations rather than a mimic of one of the 

preloaded designs.

http://csdt.rpi.edu


csta k–12 computer science standards  •  37

•  Edit designs with Photoshop Express.

  Have students watch the online tutorial and create an account.

  Edit the design.

•  Prepare presentations to include:

  Culture

  Math connections

  Demo of software

  Display of designs

•  Groups deliver presentations.

Assessment/Evaluation Techniques:

•  Students are assessed on their projects, including design, description of culture, math connections, and 

demo. Students should also be assessed on their work as a team.

Accommodations:

•  Use extensive visual aids and demonstrations to assist students as needed. 

•  Provide appropriate adaptive devices or implementation accommodations for identified students. 

•  Construct student groups to enable assistance where necessary

Resources:

•  Culturally Situated Design Tools: http://csdt.rpi.edu/ 

(site and adaptations of tutorials courtesy of Ron Eglash)

  Virtual Bead Loom Tutorial

  Pacific Northwest Basket Weaver Tutorial

  Navajo Rug Weaver Tutorial

  Culturally Situated Design Tools Project Sample Rubric

•  Photoshop Express: http://photoshoponline.com/



38  •  csta k–12 computer science standards

ACTIvITy: COMPARE OPEN SOuRCE PRODuCTIvITy SOFTWARE WITh COMMERCIAL SOFTWARE

Time: 4 hours

Description:  Students develop an understanding of open source productivity software by 

comparing it with its commercial counterparts. Various features of productivity 

software will be explored. Students have the opportunity to compare and 

analyze the results of their findings.

Level: 2

Topics:  The comparison of Open Source productivity software with its commercial 

counterparts.

Prior Knowledge: Working knowledge of commercial productivity software.

Planning Notes: 

•  Review the purpose of and features of various types of productivity software: word processing, 

spreadsheets, presentation

•  Have commercial productivity software installed, such as Microsoft Office.

•  Have open source productivity software installed, such as Open Office.

•  Visit openoffice.org or appropriate URL for your open source software and review different kinds of open 

source productivity software available.

Teaching/Learning Strategies:

•  Select a set of tasks to perform (examples: create a flyer in word processing software, create a table and a 

chart in spreadsheet software, create a slide show in presentation software).

•  Split the class in teams of two.

•  In every pair, have one student use commercial products, and the other student use open source products 

to complete an assigned task.

•  Once completed, have the students compare the results and identify similarities and differences in 

working with the software and in the final output.

•  Each pair of students is to create a report stating their findings. This report should cover the following 

categories: task(s) completed, types of software used, features used in that software, similarities/

differences. The report should conclude with a statement about which software the team preferred and 

why.

•  Once reports are submitted and/or presented to class, open discussion may follow about relative benefits 

and drawbacks of using open source products vs. commercial products. The discussion may include but 

is not limited to initial costs, licensing costs, and support costs of both types of software.

Assessment/Evaluation Techniques:

•  Report on similarities and differences between commercial and open source software.

•  Participation in class discussion.

Accommodations: 

•  Step-by-step instructions on how to complete a given task in a word processor, spreadsheet, and 

presentation software.

•  User Manual or Help on how to use productivity software.



csta k–12 computer science standards  •  39

ACTIvITy: NuMBER SySTEMS

Time: 4 hours

Description:  Students develop an understanding of the relationship between the binary number 

system and computer logic. Also, students learn how to convert Base 10 numbers into 

binary and vice versa. Character representation of binary codes is explored. Students 

have the opportunity to experiment in writing their own message and decoding.

Level: 2 

Topics:  The connection between elements of mathematics and computer science, 

including binary numbers, logic, sets and functions.

Prior Knowledge: Understanding of the decimal number system and place value

Planning Notes: 

•  Review how programming software handles character representations. 

•  Have eight pennies for each pair of students and either a handout and/or overhead of bit information

•  Review binary and base 10 conversions. 

•  Prepare coded messages for the students to decipher.

•  Have copies of ASCII code available (both standard and extended).

Teaching/Learning Strategies:

•  Show segment 3 of The Journey Inside video (8 min 25 sec—Intel Corporation. The Journey Inside. Part of 

The Journey Inside Education kit) or any other video that shows how computers turn pictures and colors 

into codes. Students gain an understanding of how information is communicated through the use of codes.

•  Hand each pair of students eight pennies and work through the questions on bit information. Ask 

students what pattern they can see forming in the right column (numbers double). 

•  Students are challenged to count as high as they can on one hand and told the answer is greater than 10. 

While students ponder the challenge, teachers demonstrate, with the aid of a simple series circuit, the 

binary logic states of ONE and ZERO (TRUE and FALSE, HIGH and LOW) by equating them to series 

circuit lamp ON and OFF condition.

•  Binary numbers are introduced by initiating finger counting on one hand—no fingers up is zero, thumb 

up is a one, index finger up is two, middle finger up is a four, ring finger is eight, and pinkie finger 

represents sixteen. Students demonstrate counting to 31 on one hand.

•  This sets the stage for demonstrating how to convert numbers from Base 10 to Base 2 (binary). Work 

through several examples with students. 

•  Give students a quiz on binary conversion to assess their grasp of the concept. 

•  Handout the ASCII conversion information. Since computers cannot think like we do, they need a code to 

translate our language into data that they can process and then convert that data back into recognizable 

language. 

•  Students complete conversion exercises.

Assessment/Evaluation Techniques:

•  Formative assessment of quiz at the end of the binary conversion exercise to prompt students on progress 

and show changes required for success of conversion application.

•  Summative assessment of conversion exercises.

Accommodations:

•  Use extensive visual aids and demonstrations to assist students as needed. 

•  Provide an enlarged copy of conversion methodology in classroom as well as ASCII character chart.

•  Use a variety of teaching styles to accommodate learning styles. 

•  Provide appropriate adaptive devices or implementation accommodations for identified students. 



40  •  csta k–12 computer science standards

ACTIvITy: PASS-IT-ON

Time: 90 minutes

Description:  In this activity, students collaboratively and incrementally construct projects 

using Scratch by passing the projects from student to student.

Level: 2

Topics:  Collaborate with peers, experts, and others using collaborative practices such as 

pair programming, working in project teams, and participating in group active 

learning activities (e.g., CS unplugged and KLAs).

  Design, develop, publish, and present products (e.g., webpages, mobile 

applications, animation) using technology resources that demonstrate and 

communicate curriculum concepts.

Prior Knowledge:  Students should have at least a basic familiarity with Scratch and its mechanism 

of snapping blocks together to specify program instructions.

Planning Notes:

In preparing for this activity, teachers should:

•  Select a theme for the pass-it-on project. Some themes that we have tried before and have been popular 

include pass-it-on stories and pass-it-on dance parties. The content of pass-it-on projects can also be 

connected to various curricular areas.

•  Decide which Scratch features and computational concepts will be demonstrated in the opening 

introduction.

Teaching/Learning Strategies:

This activity involves the following steps:

•  The teacher models the activity by starting a pass-it-on project. For example, the teacher might demonstrate 

how to start a dance party project, by adding music, a background, and a party-goer. The teacher explains 

the pass-it-on process and, as an example, makes (or solicits) two or three suggestions for elements that 

could subsequently be added to the model project (e.g., additional party-goers, more costumes).

•  The students (either individually or in pairs) each use a computer to start their pass-it-on projects. They 

have 15 minutes to work on their projects.

•  After 15 minutes, the students rotate to a new computer and continue building the project they find at the 

new computer. They have 15 minutes to work on their projects.

•  After 15 minutes, the students rotate a final time and work on a third project. They have 15 minutes to 

work on their projects.

•  At the end of this final 15 minutes, the students return to their original computer to see how the project 

they started has evolved.

•  Depending on the number of projects, students can walk around to view all (or some subset) of the other 

pass-it-on projects.

•  The teacher facilitates a discussion about the concepts and features students learned as they worked on 

the projects and looked at others’ code.

Assessment and Evaluation:

•  The closing discussion: The discussion can be used to make explicit the different concepts and features 

students learned and the challenges they experienced.

•  The pass-it-on Scratch projects: The projects can be evaluated for process (e.g., the nature of the 

collaborative activity, how students supported each others’ learning) and product (e.g., the feature and 

concepts that were included in the project, the ways in which the theme was creatively appropriated). 

This evaluation can include self-evaluation, peer-evaluation, and instructor-evaluation.



csta k–12 computer science standards  •  41

Accommodations: 

Although this activity can be completed without supplemental materials, the concepts and features demonstrated 

in the teacher’s initial modeling can be supported by making handouts available that suggest things to try. For 

example, the following handouts could be accessible nearby as students work on their creations:

•  Scratch cards: A set of 12 code excerpts. http://scratched.media.mit.edu/resources/scratch-cards

•  Monkey business: A one-page suggestion of introductory blocks to experiment with. http://scratched.

media.mit.edu/resources/monkey-business

Resources:

•  Video, documenting the “Pass-it-on story” activity, as done with a group of teenage girls. http://

scratched.media.mit.edu/stories/csed-week-day-4-wise-dance-party

•  ScratchEd online community. http://scratched.media.mit.edu/

http://scratched.media.mit.edu/resources/monkey-business
http://scratched.media.mit.edu/resources/monkey-business


42  •  csta k–12 computer science standards

ACTIvITy: SETTING uP A COMPuTER 

Time: 2 hours and 30 minutes

Description:  Students set up a computer including installing available software and an 

operating system. Students connect, configure, and test all peripherals. Finally, 

students troubleshoot any problems that arise. All students set up a PC. 

Level: 2

Topics:  Students will gain a conceptual understanding of the principles of computer 

organization and the major components (i.e., input, output, memory, storage, 

processing, software, operating systems).

Prior Knowledge: Components of a computer system, correct terminology

Planning Notes: 

•  Prepare available samples of micro-controllers and PCs of various types.

•  Determine the most effective use of existing hardware within the recommended time allotment (e.g., two 

to three students per computer).

•  Open an older discarded hard drive for demonstration purposes.

•  If resources are limited, a single system may be set up several times to accommodate all students.

•  This activity is done with stand-alone machines to not interrupt a networked environment.

•  The teacher should review the procedures in the attached appendices. This activity assumes that the 

computer system hard drive has been configured prior to the installation of the operating system. 

•  The actual system installation can be performed as a class “walk through.” The teacher can modify the 

process to have the individual groups perform the set-up task. 

•  The teacher should review the disk partitioning, formatting, scandisk operations, and information 

available in the Help files of the operating system (see Resources).

•  Inventory the operating system CD-ROM and software key. 

•  Ensure all software is available for the full installation including operating systems, device drivers, and 

application software. 

Teaching/Learning Strategies: 

•  Teachers and students review safety with static electricity and the importance of keeping contacts clean 

as they apply to components. Review the safety considerations when setting up a desktop computer 

(grounded plugs, using power bars, dangling cords, eliminating the danger of static electricity, and 

unplugging power supply before opening a PC, etc.). 

•  The teacher explains how hard drives work so that students can understand the utility functions they are 

required to complete by the end of the activity.

•  Students use the equipment they require to complete the task, including the monitor, CPU, keyboard, mouse, 

and a printer, if available. The teacher explains any special considerations they need to know (e.g., positioning 

of computers for plugs in the room). Students use this information to create a checklist for the activity.

•  Depending on the resources available, divide students into the appropriate number of groups. Students 

connect all the parts of their computer system. Circulate to help with troubleshooting and use questioning 

techniques to assist with problem solving.

•  Once all components are connected, students load the operating system software. Students complete their 

personal checklist. 

•  All groups must then test their software to ensure their system is working and that all peripherals 

connected are functioning properly. 



csta k–12 computer science standards  •  43

Assessment/Evaluation Techniques: 

•  A formative assessment through student discussion and observation, encouraging students to assess their 

thinking for successful completion of task.

•  Assess student-created checklists. Provide students with written/oral feedback, to assist their success in 

upcoming related activities.

Accommodations: 

•  Provide step-by-step instructions.

•  Provide a glossary of terms.

•  Provide visuals of different computer types.



44  •  csta k–12 computer science standards

A.3  Sample Activities for Level 3

ACTIvITy: CAREERS IN COMPuTER ENGINEERING

Time: 3 hours and 45 minutes

Description:  A guest speaker is invited to share information about his/her career with the 

students. Students expand on their computer industry knowledge. Students look 

at degrees and certifications available and opportunities they have at the high 

school level and beyond to move them toward careers in the computer industry.

Level: 3A, 3B (could also be used for Level 2 with some modification)

Topic:  Students will gain a conceptual understanding of the identification of different 

careers in computing and their connection with the subjects studied in this 

course (e.g., information technology specialist, webpage designer, systems 

analyst, programmer, CIO).

Prior Knowledge: Word-processing skills

Planning Notes:

•  Guest speakers may include the school system administrator, district technician, or someone from the 

local community.

•  Collect information from a local university or community college, including school course calendars and 

college/university catalogues.

•  Gather copies of recent computer trade magazines.

•  Arrange ahead of time for a student to introduce guest speakers and another student to thank them.

•  Collect newspaper advertisements for jobs in the computer industry.

•  Distribute a sample certification worksheet 

Teaching/Learning Strategies:

•  Teachers introduce the expectations of the activity.

•  Teachers review with students (ahead of time) questioning techniques for the guest speaker.

•  One student may introduce the guest speaker. Students take brief notes in order to ask relevant and 

interesting questions. 

•  Discuss the speaker information with the students, after which they write their personal views on the 

information.

•  Students look through trade magazines to see advances in the computer industry. Each student picks one 

article from a magazine to summarize or review using a word processor. 

•  Finally, students look at opportunities for different computer designations ranging from MCSE 

(Microsoft Certified Engineer) to computer engineering at the university level. Students use newspaper 

advertisements to explore what skills and designations are requested by potential employers. 

•  Students retrieve the certification chart file (either electronically or via handout) and, using designations 

discovered in the advertisement exercise above, they complete the chart.

•  Students create a plan on how to pursue a computer career, beginning with the completion of this course, 

and save the information in their portfolio (long-term goal).

Assessment and Evaluation:

•  Provide feedback on completion and comprehension of tasks given.

•  Evaluate the article review using a rubric you have created. 



csta k–12 computer science standards  •  45

Accommodations:

•  Allow flexible timelines for due date of report.

•  Use career center videos if available.

•  Invite the Student Services resource personnel into the classroom.

•  Videotape the guest speaker’s presentation to allow students an opportunity to watch it again.

__________________________________________________________________________________________________

ACTIvITy: CuLTuRALLy SITuATED DESIGN TOOLS—CORNROW CuRvES 

Time: 3 hours

Description:  This lesson serves as a reinforcement of the problem-solving process and 

connections between mathematics and computation within the context of a 

culturally situated design tool.

Level: 3A, 3B

Topics:  Explain how sequence, selection, iteration, and recursion are building blocks 

of algorithms; Describe how computation shares features with art and music 

by translating human intention into an artifact; Describe how computing 

enhances traditional forms and enables new forms of experience, expression, 

communication, and collaboration.

Prior Knowledge: Understanding of Cartesian coordinate system.

Planning Notes: 

•  Ensure that csdt.rpi.edu is accessible to all students

•  Create rubric for project and provide it to students in advance

•  Review Cartesian coordinate system 

Teaching/Learning Strategies:

•  Cultural background of cornrow braiding

  Students read the cultural background and how to braid sections (csdt.rpi.edu, Cornrow Curves).

•  Group discussion on cultural background of cornrow braiding

  Divide students into groups of 3–4 and ask each group to reflect on one of the following sections:

•  African Origins

•  Middle Passage

•  Civil War to Civil Rights

•  Hip Hop

  Each group shares their response with the rest of the class.

•  Cornrow curves design tool tutorial

  Individual students complete Part I of the tutorial following all instructions and checking their work 

with their elbow partner.

  Discuss any issues as a class before proceeding to Part II.

  Complete Part II of the design tutorial.

  Stress mathematics and structured inquiry.

•  Cornrow curves project

  Students create their own design.

  Describe each step of the problem-solving process used.

  Highlight the mathematical concepts used and where used.

  Reinforce the strategy of finding a similar problem that has already been solved to help solve the new 

problem.



46  •  csta k–12 computer science standards

•  Gallery walk of designs

  Students share their solutions.

Assessment/Evaluation Techniques:

•  Students are assessed on their projects, including design, description of process used, and description of 

mathematical concepts used.

Accommodations:

•  Use extensive visual aids and demonstrations to assist students as needed. 

•  Provide appropriate adaptive devices or implementation accommodations for identified students. 

•  Construct student groups to enable assistance where necessary

Resources:

•  Culturally Situated Design Tools Cornrow Curves—csdt.rpi.edu (courtesy of Ron Eglash)

__________________________________________________________________________________________________

ACTIvITy: NEW SOLuTIONS FOR OLD PROBLEMS

Time: 5 hours

Description:  Students examine problems that can be solved using more than one algorithm 

(e.g., determining the factorial value of a number). Using brainstorming 

or other group problem-solving techniques, students develop alternative 

algorithms using recursive and non-recursive techniques. Students identify the 

components of a recursive algorithm and develop criteria for recognizing when 

a recursive algorithm may be applied.

Level: 3A, 3B

Topics:  Fundamental ideas about the process of program design, and problem solving, 

including style, abstraction, and initial discussions of correctness and efficiency 

as part of the software design process.

 Simple data structures and their uses.

Prior Knowledge :  Use of problem-solving models, the ability to develop appropriate algorithms 

to solve problems, and the ability to write pseudocode.

Planning Notes:

•  Review the nature of recursion.

•  Gather examples of problems that can be solved using more than one method, including recursion, and 

determine which problems may be solved using a recursive algorithm.

Teaching/Learning Strategies:

•  Divide the class into groups of two or three students.

•  Review the brainstorming problem-solving technique.

•  Present a problem that can be solved using a familiar but complex algorithm and may also be solved 

using a less familiar but simpler algorithm (e.g., determining the quotient and remainder of the division 

of two integers).

•  Students, in their groups, develop more than one algorithm for the solution.

•  The teacher facilitates a class discussion to develop criteria for the evaluation of algorithms, including the 

efficiency of the solution and the complexity of the required coding. Both processing and user interface 

efficiencies are considered.

http://csdt.rpi.edu


csta k–12 computer science standards  •  47

•  Groups evaluate the algorithms using the developed criteria and share their algorithms and evaluations 

with the class.

•  The teacher introduces the recursive method of problem solving and illustrates a recursive algorithm for 

the solution to a different problem (e.g., calculating the factorial value of a number).

•  Groups develop a recursive algorithm to the initial problem and evaluate its efficiency.

•  The teacher facilitates a class discussion to establish criteria for determining if a recursive algorithm is an 

appropriate solution and identifies additional problems that may be solved using recursion.

•  Working in groups, students develop recursive and non-recursive algorithms for additional, assigned problems.

Assessment and Evaluation: 

•  A formative assessment of the assigned in-class work in the form of roving conferences, and 

•  A summative assessment in which students complete an assignment requiring the development of both a 

recursive and a non-recursive algorithm.

Accommodations:

•  Provide print copies of examples of algorithms using recursive and non-recursive methods, including 

graphic illustrations, and use models to illustrate the algorithms.

__________________________________________________________________________________________________

ACTIvITy: PLANNING A SOLuTION

Time: 6 hours

Description:  Students work in groups to analyze complex problems (e.g., Towers of Hanoi) and 

to develop appropriate algorithms using recursive and non-recursive techniques. 

Students create pseudocode and design charts to assist them in planning a 

solution and assess these representations of code as problem-solving tools.

Level: 3A, 3B

Topics:  Fundamental ideas about the process of program design, and problem solving, 

including style, abstraction, and initial discussions of correctness and efficiency 

as part of the software design process. 

Prior Knowledge:  Students can apply the steps in the software design life cycle; use pseudocode, 

diagrams, and charts to summarize program design; and develop appropriate 

algorithms to solve problems.

Planning Notes: 

•  Review top-down problem solving.

•  Select a problem to use in developing a model solution and prepare the appropriate models.

Teaching and Learning Strategies:

•  The class is divided into groups of two or three students and each group is assigned a problem.

•  Groups investigate the problem, using a variety of problem-solving techniques to analyze it.

•  Each group uses brainstorming or other group problem-solving techniques to develop an algorithm for 

the solution to the problem. In a class discussion, groups present and share their algorithms.

•  Students compare the effectiveness and efficiency of the algorithms presented and then the groups refine 

their algorithms.

•  Each group develops a flow chart, structure chart, and/or pseudocode to represent the application of the 

algorithm. The teacher conferences with each group to discuss and assess the solution design.



48  •  csta k–12 computer science standards

Assessment and Evaluation:

•  A formative peer assessment of the presented algorithms.

•  A formative assessment of the design for the solution to the problem.

Accommodations:

•  Provide print sample algorithms similar to the one studied.

•  Use graphical models to illustrate the problem.

•  Selectively pair/group students to assist problem solving.

•  Provide problems of varying complexity to provide an appropriate challenge.

__________________________________________________________________________________________________

ACTIvITy: ROLE PLAyING hELPER FuNCTIONS/RECuRSION

Time: 1 hour

Description:  Students role play various objects of simple programs to understand parameter 

passing and recursive calls

Level: 3B, 3C.1 

Topics: Methods (functions) and parameters, recursion

Prior Knowledge: Compile and run simple programs; write code using parameters.

Planning Notes: 

•  Prepare or obtain from resources scripts for role playing objects in a small program with several nested 

(and usually also recursive) calls.

•  Gather colored markers and poster board as needed.

Teaching/Learning Strategies:

•  Review the concepts of constructors, parameters, and calling helper methods. 

•  Students read code for the program to be used for the role play.

•  Select a student to role play the main function. If desired, give student a large name tag to wear. Select 

another student to be the code monitor whose job is to keep a record of the current line of code being 

executed.

•  Assist class as they act out the script, each time an object is constructed the student calling the constructor 

function picks a classmate to play the role of the object; if using name tags, be sure to give each object-

player a name tag. Using different sized, shaped, or colored tags for different classes is helpful.

•  Frequently pause the play and ask audience members to identify who the next actor will be.

Assessment and Evaluation:

•  A formative assessment of the role play in the form of roving interviews.

•  A summative assessment can be administered asking students to indicate the number of objects in 

existence as the play progressed and similar questions. 

Accommodations:

•  Let pairs of students play a role.

•  Assign roles yourself giving simpler roles to students who are struggling.

Resources:

•  Several role playing exercises are available at: http://cs.colgate.edu/APCS/Java/RolePlays/

JavaRolePlays.htm

http://cs.colgate.edu/APCS/Java/RolePlays/JavaRolePlays.htm
http://cs.colgate.edu/APCS/Java/RolePlays/JavaRolePlays.htm


csta k–12 computer science standards  •  49

ACTIvITy: ShORT PROGRAMMING ChALLENGES IN SCRATCh 

Time: 90 minutes

Description:  Students construct solutions to short programming challenges that explore 

interactivity in Scratch and discuss the various solutions and possible 

applications of these challenges in their programs.

Level: 3

Topics: Apply algorithmic problem solving to solving computational problems.

Prior Knowledge:  Students should have some familiarity with the Scratch environment, connecting 

blocks to create programs, creating sprites, managing program flow, and 

triggering events.

Planning Notes:

Before the activity, teachers should select challenges to go through with their students based on what Scratch 

features and computational concepts they would like to explore. For example, the teacher may consider the 

following challenges: 

•  Whenever two sprites collide, one of them says: “Excuse me.”

  Scratch features: If, Touching blocks

  Computational concepts: Condition, Events

•  Whenever you click on a sprite, all other sprites do a dance.

  Scratch features: Broadcast, When Sprite clicked block

  Computational concepts: Events, Parallelism, Synchronization 

•  When the score reaches 10, the scene (background) changes.

  Scratch features: If, Operators, Variables blocks

  Computational concepts: Condition, Operators, Variables

Find more challenges at: http://scratched.media.mit.edu/resources/short-scratch-programming-challenges

Teaching/Learning Strategies:

For each challenge, teachers should:

•  Present students with a challenge. Encourage them to work with their peers to come up with a possible 

solution.

•  After 15 minutes, facilitate a discussion around the diversity of solutions that students developed to 

address the given challenge. Ask students how they might use their solutions to create other Scratch 

projects. For example, the challenge “Whenever two sprites collide, one of them says: “Excuse me” can be 

adapted into a project with a story that involves the interaction of multiple sprites. 

Assessment and Evaluation:

In the group discussion, students can articulate their solutions and evaluate the solutions of others to address 

each challenge.

Accommodations:

Teachers may want to print out the challenges for students to have on hand. 

Resources:

•  Description and video of Scratch Challenges Activity with a group of educators at http://scratched.

media.mit.edu/resources/short-scratch-programming-challenges

•  ScratchEd website at http://scratched.media.mit.edu/

http://scratched.media.mit.edu/resources/short-scratch-programming-challenges
http://scratched.media.mit.edu/resources/short-scratch-programming-challenges


50  •  csta k–12 computer science standards

A.4  Sample Activities for Level 3C: Topics in Computer Science

ACTIvITy: INTRODuCTION TO OBjECT ORIENTED DESIGN

Time: 3 hours

Description:  Students are introduced to the initial steps of applying Object Oriented Design 

(OOD) to a programming problem and practice applying those steps to a 

problem which may later be used as a significant programming project

Level: 3C.1 AP Computer Science, 3C.2 Projects 

Topics: Fundamental ideas about the process of object oriented program design

Prior Knowledge and Skills: none

Planning Notes:

•  Prepare blank diagrams for use as CRC cards and/or object diagrams

•  Select examples of problems that can be solved by using object oriented techniques.

Teaching/Learning Strategies:

•  Explain the differences between an object oriented and a functional approach to the design of a computer 

program. 

•  Have a student explain how a card game (like blackjack) is played.

•  Working with the class, identify potential objects involved in the game.

•  Working with the class, identify possible operations that might be done by or to a card or one possible 

object. Students in small groups brainstorm operations for other objects identified as part of the problem.

•  Illustrate how the two notations can be used to summarize the analysis so far.

•  Discuss possible relationships between objects.

•  Show notations for relationships.

•  Describe a possible scenario in the game and use developed notations to represent that scenario.

•  Have students in pairs describe a second scenario and represent it.

•  Share class scenarios and consider whether they collectively represent the range of possibilities especially 

extreme scenarios.

•  Students read the possible problems and select one on which to do an OOD. Students work individually 

on the first two phases (identify objects and operations).

•  Students working on the same problem share results and agree on a “best” set of objects and operations.

•  Students individually complete the last two steps.

Assessment and Evaluation:

•  A formative assessment of the assigned in-class work in the form of roving conferences.

•  A summative assessment applying OOD to a new problem 

Accommodations:

•  Provide copies of problem descriptions, with important nouns and verbs indicated using a different font 

or type size. Provide written scenarios for each problem.

Resources:

•  Wirfs-Brock, Wilkerson, and Wiener, Designing Object-Oriented Software, Prentice Hall, 1990 

•  Fowler, UML Distilled: Applying the Standard Object Modeling Language, Addison-Wesley, 1997.

•  Overview of lesson and sample exercises are available at: http://max.cs.kzoo.edu/AP/OOD/

OODPresentation/ and http://max.cs.kzoo.edu/AP/OOD/OODSpecifications/

http://max.cs.kzoo.edu/AP/OOD/OODPresentation/
http://max.cs.kzoo.edu/AP/OOD/OODPresentation/


csta k–12 computer science standards  •  51

A.5   Additional Resources for Levels 
3.C.2 and 3.C.3: 

A wide range of resources is available for supporting 

a Level 3 computer science curriculum.

AP Computer Science Course
The curriculum for all AP CS courses is governed by 

the topic outline available from The College Board at 

http://apcentral.collegeboard.com/apc/Controller.jpf.

Courses Leading to Industry Certification
Many of the certification courses provide a prepared 

curriculum that details the content and order of top-

ics. While implementation of this type of course may 

be simplified by the information provided, careful 

evaluation is needed with regard to proprietary con-

tent versus general concepts. Information about the 

content of some certification courses can be found on-

line by searching for the specific certification.

Projects-Based Courses
Projects-based courses can provide targeted educa-

tion geared toward specific student interests in Com-

puter Science. While these courses can be offered by 

the local school district, enrolling students in a col-

lege-based course should be considered. Computer 

projects-based courses are often offered in a college 

or university department of computer science, infor-

mation technology, or information systems. Comput-

er-based programs of study at the college level are 

typically well established and provide a variety of 

current topics. Additionally, a student participating 

in a college computer course may be eligible for col-

lege credit. The secondary school will need to inves-

tigate the content of each course to determine if it is 

appropriate for Level 3C study.

Courses for college credit can be offered on the 

college campus, at the high school, or via distance 

education. A course offered on the college campus 

will place fewer burdens on the high school for 

supporting special hardware, software, and faculty 

resources. 

Online courses can be taken off-hours or during 

school time. A student who chooses to take an on-

line course outside of school hours will need access to 

specified hardware, software, and the Internet. When 

a college-delivered online course is offered during 

the school day, it may be possible to schedule several 

online courses during the same class session, allow-

ing better utilization of faculty time. To support this, 

the school must also provide access to the required 

hardware, software, and the Internet. 

A course for college credit offered at the secondary 

school permits the student and high school faculty 

member to interact in a traditional manner. The sec-

ondary school will need to ensure that the curricu-

lum is sanctioned by the college and students are of-

ficially enrolled in the college. The college may wish 

to participate in the selection of the faculty member 

delivering the course. 

Some typical methods by which high school students 

can achieve college credit follow.

Tech Prep and Articulation Credit—The student takes 

a course at the high school and receives high school 

credit. The course is also pre-approved for college 

credit at a particular college and is typically taught by a 

high school faculty member. Credit is awarded for the 

course upon matriculation at that college. The college 

may require that the student pass a competency exam 

before applying the credit to the student’s transcript. 

Dual Credit/Concurrent Enrollment—The student is 

enrolled in a course for which s/he simultaneously 

receives high school and college credit. The student 

must meet all college requirements for entrance into 

the course. 

Challenge Exams—The student may be able to prove 

proficiency and receive credit by exam. This method 

is useful for a student who completes a high school 

course that is not articulated, or who believes s/he 

has independently gained knowledge of all topics 

covered by a specific course. The student may be 

charged a fee to sit for the exam.



52  •  csta k–12 computer science standards

Advanced Placement/CLEP Test—A student planning 

college study toward a career in Computer Science, 

Information Technology, or Engineering may wish 

to take an AP Exam in Computer Science. A student 

planning college study toward a career in Business 

may wish to take the CLEP Exam in Information 

Systems and Computer Applications. It is recom-

mended that the student determine how credit will 

be granted for success on the exam from his/her tar-

geted institution.

Programs that Provide College Credit to  
High School Students
A number of programs provide college credit to high 

school students. Here are three examples:

The University of Pittsburgh’s College in High School is 

one example of high schools interacting with a col-

lege. The College in High School (CHS) program has 

offered qualified high school students the opportunity 

to earn University of Pittsburgh college credits dur-

ing their regular school day. Students are required to 

pay a reduced tuition to participate in the program. 

Financial Aid may be available. The program of-

fers “14 courses to more than 2,900 students in over 

100 high schools with more than 200 faculty” (Pitts-

burgh). At the end of the course, students receive 

a University of Pittsburgh college transcript. Find  

information about this program at http://www. 

asundergrad.pitt.edu/offices/chsp/highschools.html. 

The University of Cincinnati Clermont College also offers 

high school students the opportunity to earn college 

credit by providing a Post-Secondary Enrollment Op-

tions Program (PSEOP). This program permits the stu-

dent to enroll in the college for college credit only, or to 

enroll for both high school and college credit. In some 

semesters, the cost of tuition and books may be paid by 

the high school and/or college. See http://admissions.

uc.edu/highschool/adv_placement/pseop.html for 

more information.

The University of Northern Colorado provides “High 

School Concurrent Credit, a program for Colorado 

Residents enabling high school Juniors and Seniors to 

earn college credit while in high school” (Colorado). 

Three options are provided under the program: 

Option I—Fast Track Program: For the student 

who is a high school senior and has met high 

school graduation requirements.

Option II—Post-Secondary Enrollment Options 

Program: For the student who is a high school 

junior or senior and has not met high school  

requirements.

Option III—College Acceleration Program: 

For the student who is a high school junior 

or senior and wants to accelerate his or her 

college program whether or not the graduation 

requirements have been met. (Colorado)

Resources

1. eHow.com, How to Get College Credit Before 

Attending College, Downloaded 1/29/2011 

http://www.ehow.com/how_4424237_ 

getcollege-credit-before-attending.html

3. Arthur R. Greenberg, ERIC Clearinghouse on 

Higher Education Washington DC, BBB27915, 

George Washington Univ. Washington DC. 

School of Education and Human Development, 

ERIC Identifier: ED347956, Publication Date: 

1992-03-00, http://www.ericdigests.org/1992-2/

high.htm

4. Comparison of Methods to Receive College 

Credit for Courses Taken in High School,  

http://www.tea.state.tx.us/Cate/teched/ 

collegecreditinhs.pdf

5. Dawn Fuller, University of Cincinnati, High 

School Students: Do You Qualify for UC Col-

lege Credit? Downloaded: March 7, 2003, from 

http://www.uc.edu/news/NR.asp?id=300

http://www.asundergrad.pitt.edu/offices/chsp/highschools.html
http://www.asundergrad.pitt.edu/offices/chsp/highschools.html
http://admissions.uc.edu/highschool/adv_placement/pseop.html
http://admissions.uc.edu/highschool/adv_placement/pseop.html
http://www.ehow.com/how_4424237_getcollege-credit-before-attending.html
http://www.ehow.com/how_4424237_getcollege-credit-before-attending.html
http://www.ericdigests.org/1992-2/high.htm
http://www.ericdigests.org/1992-2/high.htm
http://www.tea.state.tx.us/Cate/teched/collegecreditinhs.pdf
http://www.tea.state.tx.us/Cate/teched/collegecreditinhs.pdf
http://www.uc.edu/news/NR.asp?id=300


csta k–12 computer science standards  •  53

6. The College Board, AP Central, Downloaded 

1/29/2011, http://apcentral.collegeboard.com/

apc/Controller.jpf

7. University of Cincinnati Clermont College, 

Post-Secondary Enrollment Options Program. 

Downloaded 1/29/2011 from http://admissions.

uc.edu/highschool/adv_placement/pseop.html

8. University of Northern Colorado, 

Undergraduate Admissions, High School 

Concurrent. Downloaded 1/29/2011 from 

http://www.unco.edu/admissions/special_

populations/highschoolconcurrent.asp

9. University of Pittsburgh, College in High School, 

Downloaded 1/29/2011 http://www.asundergrad.

pitt.edu/offices/chsp/highschools.html

10. U.S. Department of Education, Community  

College and High School Partnerships by 

Elisabeth Barnett and Katherine Hughes, Com-

munity College Research Center. Downloaded 

1/29/2011 from http://www2.ed.gov/PDF 

Docs/college-completion/09-community- 

college-and-high-school-partnerships.pdf

11. U.S. Department of Education, Tech Prep  

Education. Downloaded 1/29/2011 from http://

www2.ed.gov/programs/techprep/index.html

http://apcentral.collegeboard.com/apc/Controller.jpf
http://apcentral.collegeboard.com/apc/Controller.jpf
http://admissions.uc.edu/highschool/adv_placement/pseop.html
http://admissions.uc.edu/highschool/adv_placement/pseop.html
http://www.unco.edu/admissions/special_populations/highschoolconcurrent.asp
http://www.unco.edu/admissions/special_populations/highschoolconcurrent.asp
http://www.asundergrad.pitt.edu/offices/chsp/highschools.html
http://www.asundergrad.pitt.edu/offices/chsp/highschools.html
http://www2.ed.gov/PDFDocs/college-completion/09-community-college-and-high-school-partnerships.pdf
http://www2.ed.gov/PDFDocs/college-completion/09-community-college-and-high-school-partnerships.pdf
http://www2.ed.gov/PDFDocs/college-completion/09-community-college-and-high-school-partnerships.pdf
http://www2.ed.gov/programs/techprep/index.html
http://www2.ed.gov/programs/techprep/index.html


54  •  csta k–12 computer science standards

References

1. 2008–09 Taulbee Survey. (2009). Downloaded 

February 2011 from http://www.cra.org/ 

resources/taulbee/

2. AP Course Description: Computer Science. (2011) 

Downloaded February 2011 from  

http://apcentral.collegeboard.com/apc/public/

courses/teachers_corner/4483.html

3. Computer Science Unplugged. (2011). Downloaded 

February 2011 from http://csunplugged.org/

4. Deek, F. and H. Kimmel. (1999). Status of Com-

puter Science Education in Secondary Schools. 

Computer Science Education 9(2), 89–113, August 

1999.

5. Ericson, B., Armoni, M., Gal-Ezer, J., Seehorn, D., 

Stephenson, C., Trees, F. (2008) Ensuring 

Exemplary Teaching in an Essential Discipline: 

Addressing the Crisis in Computer Science Teacher 

Certification. New York: Association for Comput-

ing Machinery.

6. Friedman, T.L. (2007). The World is Flat 3.0: A 

Brief History of the Twenty-first Century. Picador/

Farrar Straus, and Giroux. New York, NY.

7. Gal-Ezer, J. and D. Harel. (1999). Curriculum 

for a high school computer science curriculum. 

Computer Science Education 9(2), 114-147.

8. Lapidot, T. and Hazzan, O. (2003). Methods of 

Teaching a Computer Science Course for Pro-

spective Teachers. Inroads—The SIGCSE Bulletin, 

35(4), 29–34.

9. National Council for Accreditation of Teacher 

Education. Program for Initial Preparation of 

Teachers of: Educational Computing and Techno-

logical Literacy, and Secondary Computer Science 

Education. http://www.ncate.org/Standards/

ProgramStandardsandReportForms/tabid/676/

Default.aspx

10. National Research Council Committee on Infor-

mation Technology Literacy, Being Fluent with 

Information Technology, National Academy Press, 

Washington, DC, May 1999. 

11. Papert, Seymour. Mindstorms: Children, Comput-

ers, and Powerful Ideas (1980). New York, NY: 

Basic Books.

12. Simard, C., Stephenson, C., Kosaraju, D. (2010). 

Addressing Core Equity Issues in K–12 Computer 

Science Education: Identifying Barrier and Sharing 

Strategies. The Anita Borg Institute and the 

Computer Science Teachers Association. Palo 

Alto, CA.

13. Task Force of the Pre-College Committee of 

the Education Board of the ACM. (1993). ACM 

Model High School Computer Science Curricu-

lum. Communications of the ACM, 36(5), 87–90. 

14. Tucker, A., McCowan, D., Deek, F., Stephenson, 

C., Jones, J., & Verno, A. (2003, 2006). A Model 

Curriculum for K–12 Computer Science: Report of 

the ACM K–12 Task Force Computer Science Cur-

riculum Committee, New York, NY: Association 

for Computing Machinery.

15. Wilson, C., Stephenson, C., Stehlik, M., Sudol, 

L. (2010). Running on Empty: The Failure to Teach 

Computer Science in the Digital Age. Association 

for Computing Machinery and the Computer 

Science Teachers Association, New York, NY.

http://www.cra.org/resources/taulbee/
http://www.cra.org/resources/taulbee/
http://apcentral.collegeboard.com/apc/public/courses/teachers_corner/4483.html
http://apcentral.collegeboard.com/apc/public/courses/teachers_corner/4483.html
http://www.ncate.org/Standards/ProgramStandardsandReportForms/tabid/676/Default.aspx
http://www.ncate.org/Standards/ProgramStandardsandReportForms/tabid/676/Default.aspx
http://www.ncate.org/Standards/ProgramStandardsandReportForms/tabid/676/Default.aspx


csta k–12 computer science standards  •  55

K–12 Standards Scaffolding Charts

Collaboration



56  •  csta k–12 computer science standards

Computational Thinking



csta k–12 computer science standards  •  57



58  •  csta k–12 computer science standards

Computing Practice and Programming



csta k–12 computer science standards  •  59



60  •  csta k–12 computer science standards

Computers and Communications Devices



csta k–12 computer science standards  •  61



62  •  csta k–12 computer science standards

Community, Global, and Ethical Impacts



csta k–12 computer science standards  •  63



64  •  csta k–12 computer science standards

NOTES



csta k–12 computer science standards  •  65

NOTES



The first year of your CSTA membership is FREE!
WHAT IS THE COMPUTER SCIENCE TEACHERS ASSOCIATION (CSTA)?

The Computer Science Teachers Association, a limited 
liability company under the auspices of ACM, has 
been organized to serve as a focal point for addressing 
several serious (crisis level) issues in K–12 computer 
science education, including:

•  Lack of administrative, curricular, funding, 
professional development and leadership 
support for teachers

•  Lack of standardized curriculum
•  Lack of understanding of the discipline and its 

place in the curriculum
•  Lack of opportunities for teachers to develop 

their skills and interests

The above issues result in:
•  A profound sense of isolation, and
•  Dropping enrollment in college level computer 

science programs

There are other organizations that address use of 
technology across the curriculum, but only CSTA 
speaks directly and passionately for high school 
computer science.

OUR MISSION
CSTA is a membership organization that supports and 
promotes the teaching of computer science and other 
computing disciplines at the K–12 level by providing 
opportunities for teachers and students to better 
understand the computing disciplines and to more 
successfully prepare themselves to teach and to learn.

OUR GOALS
CSTA’s organizational and educational goals include:

•  Helping to build a strong community of CS 
educators who share their knowledge

•  Providing teachers with opportunities for 
high-quality professional development

•  Advocating at all levels for a comprehensive 
computer science curricula

•  Supporting projects that communicate the 
excitement of CS to students and improve 
their understanding of the opportunities it 
provides

•  Collecting and disseminating research about 
computer science education

•  Providing policy recommendations to support 
CS in the high school curriculum, and

•  Raising awareness that computer science 
educators are highly qualified professionals 
with skills that enrich the educational 
experience of their students

OUR SCOPE
The scope of the organization includes:

•  High school (all aspects of computer science 
education)

•  Elementary and middle school (introducing 
problem solving and algorithmic thinking)

•  College/university (to establish better 
transition for high school programs and 
provide a greater level of support to high 
school teachers)

•  Business and industry (supporting computer 
science education and teachers)

WHO SHOULD JOIN?
•  All High School & Middle School Computer 

Science Teachers
•  All K–12 Computer Applications Teachers
•  All individuals interested (and passionate) 

about K–12 CS Education

The first year of your CSTA membership is FREE!

JOIN US VIA…
web: http://csta.acm.org/
phone: 1.800.342.6626
e-mail: cstahelp@acm.org


	Button 156: 
	Button 106: 
	Button 105: 
	Button 68: 
	Button 67: 
	Button 18: 
	Button 16: 
	Button 17: 
	Button 19: 
	Button 69: 
	Button 70: 
	Button 20: 
	Button 107: 
	Button 108: 
	Button 155: 
	Button 157: 
	Button 145: 
	Button 144: 
	Button 95: 
	Button 97: 
	Button 100: 
	Button 99: 
	Button 98: 
	Button 59: 
	Button 58: 
	Button 12: 
	Button 9: 
	Button 96: 
	Button 57: 
	Button 56: 
	Button 55: 
	Button 54: 
	Button 11: 
	Button 8: 
	Button 7: 
	Button 6: 
	Button 94: 
	Button 53: 
	Button 51: 
	Button 10: 
	Button 5: 
	Button 146: 
	Button 149: 
	Button 150: 
	Button 147: 
	Button 148: 
	Button 152: 
	Button 151: 
	Button 101: 
	Button 62: 
	Button 61: 
	Button 60: 
	Button 13: 
	Button 14: 
	Button 63: 
	Button 65: 
	Button 102: 
	Button 103: 
	Button 153: 
	Button 154: 
	Button 15: 
	Button 64: 
	Button 66: 
	Button 104: 
	Button 158: 
	Button 72: 
	Button 73: 
	Button 75: 
	Button 74: 
	Button 33: 
	Button 32: 
	Button 25: 
	Button 31: 
	Button 30: 
	Button 24: 
	Button 71: 
	Button 29: 
	Button 28: 
	Button 23: 
	Button 22: 
	Button 159: 
	Button 160: 
	Button 161: 
	Button 112: 
	Button 115: 
	Button 118: 
	Button 117: 
	Button 116: 
	Button 114: 
	Button 113: 
	Button 111: 
	Button 162: 
	Button 119: 
	Button 76: 
	Button 35: 
	Button 34: 
	Button 120: 
	Button 78: 
	Button 77: 
	Button 36: 
	Button 26: 
	Button 121: 
	Button 79: 
	Button 37: 
	Button 27: 
	Button 122: 
	Button 163: 
	Button 164: 
	Button 165: 
	Button 166: 
	Button 124: 
	Button 123: 
	Button 81: 
	Button 80: 
	Button 40: 
	Button 39: 
	Button 38: 
	Button 167: 
	Button 127: 
	Button 126: 
	Button 125: 
	Button 83: 
	Button 82: 
	Button 41: 
	Button 84: 
	Button 128: 
	Button 168: 
	Button 169: 
	Button 130: 
	Button 131: 
	Button 132: 
	Button 85: 
	Button 42: 
	Button 170: 
	Button 129: 
	Button 87: 
	Button 86: 
	Button 44: 
	Button 43: 
	Button 171: 
	Button 133: 
	Button 88: 
	Button 47: 
	Button 45: 
	Button 172: 
	Button 136: 
	Button 135: 
	Button 134: 
	Button 137: 
	Button 91: 
	Button 49: 
	Button 90: 
	Button 89: 
	Button 48: 
	Button 173: 
	Button 174: 
	Button 177: 
	Button 176: 
	Button 175: 
	Button 142: 
	Button 141: 
	Button 140: 
	Button 139: 
	Button 138: 
	Button 92: 
	Button 93: 
	Button 143: 
	Button 178: 
	Button 50: 
	Button 46: 


