1 Introduction
The purpose of this report is to define a model curriculum for K–12 computer science and to suggeststeps that will be needed to enable its wide implementation. The goal of such a curriculum is to introduce the principles and methodologies of computer science to all students, whether they are college bound or workplace bound.
Much evidence (National Research Council, 1999) confirms an urgent need to improve the level of public understanding of computer science as an academic and professional field, including its distinctions from management information systems (MIS), information technology (IT), mathematics, and the other sciences. Elementary and secondary schools have a unique opportunity and responsibility to address this need. That is, to function in society, the average citizen in the 21st century must understand at least the principles of computer science. A broad commitment to K–12 computer science education not only will create such broad public understanding but also will help to address the worldwide shortage of computer specialists. The creation of a viable model for a computer science curriculum and its implementation at the K–12 level is a necessary first step toward reaching these goals.
This report addresses the entire K–12 range. Its recommendations are therefore not limited to grades 9–12. Moreover, it complements existing K–12 computer science and IT curricula where they are already established, especially the advanced placement (AP) computer science curriculum (AP, 2002) and the National Educational Technology Standards (NETS) curriculum (ISTE, 2002).
At this time, the development of state-level curriculum standards for computer science in the United States is nearly nonexistent. Some state standards now identify “information technology” as a subject area—either stand-alone (e.g., Arizona’s use of the NETS standards) or as a collection of topics integrated with other science curricula (e.g., Maine’s “Learning Results” (State of Maine, 1997). An important goal of this report will be to provide all states with a comprehensive framework that can be used for incorporating computer science into their existing curriculum standards.
All drafts of this report have been informed by feedback from many sources; we hope that this final draft will receive widespread dissemination and continued scrutiny from everyone who has interests or experience in K–12 computer science education. To that end, this report is published on the Computer Science Teachers Association (CSTA) Web site (http://csta.acm.org/Curriculum/sub/ACMK12CSModel. html) as well as in hardcopy. Feedback has been actively sought from the following professional organizations:
• Academy of Information Technology/National Academy Foundation (AOIT/NAT)
• Association for Computing Machinery (ACM) Special Interest Group for Computer Science Education (SIGCSE)
• ACM Education Board
• Association for Supervision and Curriculum Development (ASCD) Curriculum Directors in school districts
• Institute of Electrical and Electronics Engineers (IEEE) Computer Society Educational Activities Board
• International Society for Technology in Education (ISTE) Special Interest Group for Computer Science (SIGCS)
• National Association of Secondary School Principals (NASSP)
• National Education Association (NEA)
• National School Boards Association (NSBA)
In addition, presentations of this report at ISTE’s National Educational Computing Conference (NECC) and ACM’s SIGCSE Symposia have provided valuable opportunities for dissemination and feedback.
We recognize that many of the recommendations in this report are so ambitious as to be beyond the reach of most school districts at the present time. However, rather than do nothing, we offer this work as a comprehensive and coherent model, one that can be used as the basis for beginning a dialogue—an ideal toward which many districts can evolve over time. This report thus provides a catalyst for a long-term process—it defines the “what” from which the “how” can follow during the next several years.

2 Background

As a basis for describing a model curriculum for K–12 computer science, we use the followingdefinition of computer science as an academic and professional field.
Computer science (CS) is the study of computers and algorithmic processes
, including their principles, their hardware and software designs, their applications, and their impact on society.
In our view, this definition requires that K–12 computer science curricula have the following kinds of elements: programming, hardware design, networks, graphics, databases and information retrieval, computer security, software design, programming languages, logic, programming paradigms, translation between levels of abstraction, artificial intelligence, the limits of computation (what computers can’t do), applications in information technology and information systems, and social issues (Internet security, privacy, intellectual property, etc.).

Typically, K–12 science and mathematics curricula do not cover any significant amount of these topics, nor do they identify what they do cover as elements of computer science. However, some of the emerging K–12 information technology curricula are addressing some of them, especially the applications and social impact of computers. However, there is strong evidence (National Research Council, 1999) that a basic understanding of all these topics is now an essential component for preparing high school graduates for life in the 21st century
The goals of a K–12 computer science curriculumare to:

1. introduce the fundamental concepts of computer science to all students, beginning at the elementary school level.

2. present computer science at the secondary school level in a way that would be both accessible and worthy of a curriculum credit (e.g., math or science).

3. offer additional secondary-level computer science courses that will allow interested students to study it in depth and prepare them for entry into the work force or college.

4. increase the knowledge of computer science for all students, especially those who aremembers of underrepresented groups.
Before discussing the model curriculum itself, we first clarify the context in which it is set. Here, we would especially like to clarify the distinctions between computer science and information technology, and to summarize the nature of CS at the college and university level.
2.1 Computer Science, Information. Technology, and Fluency

Information technology (IT) involves the proper use of technologies by which people manipulate and share information in its various forms—text, graphics, sound, and video. While computer science and IT have a lot in common, neither one is fully substitutable for the other. Similarly, software engineering (SE) is the practice of designing and implementing large software systems (programs). While computer science and SE have a lot in common, neither one of these is fully substitutable for the other. A recent National Academy study (National Research Council, 1999) defines an idea called IT fluency as something more comprehensive than IT literacy. Whereas IT literacy is the capability to use today’s technology in one’s own field, the notion of IT fluency adds the capability to independently learn and use new technology as it evolves (National Research Council, 1999) throughout one’s professional lifetime. Moreover, IT fluency also includes the active use of algorithmic thinking (including programming) to solve problems, whereas IT literacy is more limited in scope.
Thus, the field of computer science sits in a continuum. Some of its topics overlap with IT, while some are completely different and are not relevant to an IT curriculum. For example, the complexity of algorithms is a fundamental idea in computer science but would probably not appear in an IT curriculum. While IT is an applied field of study, driven by the practical benefits of its knowledge, computer science has scientific and mathematical, as well as practical, dimensions. Some of the practical dimensions of computer science are shared with IT, such as working with text, graphics, sound, and video. But while IT concentrates on learning how to use and apply software as a tool, computer science is concerned with learning how these tools are designed. This latter concern exposes students to the scientific and mathematical theory that underlies the practice of computing. Therefore, any comprehensive K-12 computer science curriculum will necessarily have topics that are distinct from those that normally appear in an IT curriculum.

The idea of IT fluency (National Research Council, 1999) was proposed as a minimum standard that all college students should achieve by the time they graduate. A “fluent” graduate would master IT on three orthogonal axes—concepts, capabilities, and skills.

Concepts are the 10 basic ideas that underlie modern computers, networks, and information:

· computer organization,

· information systems,

· networks,

· digital representation of information,

· information organization,

· modeling and abstraction,

· algorithmic thinking and programming,

· universality,

· limitations of information technology,

· and societal impact of

· information technology.
Capabilities are the 10 fundamental abilities for using IT to solve a problem:

· engage in sustained reasoning,

· manage complexity,

· test a solution,

· manage faulty systems and software,

· organize and navigate information structures and evaluate information,

· collaborate,

· communicate to other audiences,

· expect the unexpected,

· anticipate changing technologies,

· think abstractly about IT.
Skills are the 10 abilities to use today’s computer applications in one’s own work:

· set up a personal computer,

· use basic operating system features,

· use a word processor and create a document,

· use a graphics or artwork package to create illustrations, slides, and images,

· connect a computer to a network,

· use the Internet to find information and resources,

· use a computer to communicate with others,

· use a spreadsheet to model simple processes or financial tables,

· use a database system to set up and access information,

· use instructional materials to learn about new applications or features.
Many colleges and universities (e.g., see National Research Council, 1999) have implemented these or similar standards and are expecting their graduates to achieve them.

2.2 Computer Science at the College/University Level

Computer science is well developed at the college and university level. In the United States alone, nearly every undergraduate college offers a major in computer science, and more than 100 universities offer PhD programs in computer science. Together, these programs produce about 45,000 baccalaureate and 850 PhD degrees each year (Taulbee, 2002).

The current model for college computer science major programs was published in 2001 (ACM/ IEEE, 2001). This model identifies the following “core” subjects in 13 distinct areas that all computer science major programs should cover. Altogether, this material covers the equivalent of seven (7) one-semester courses, or 280 lecture hours (total lecture hours for each subject area are given in parentheses).

• Algorithms and Complexity (31): analysis of algorithms, divide-and-conquer strategies, graph algorithms, distributed algorithms, computability theory

• Architecture (36): digital logic, digital systems, data representation, machine language, memory systems, I/O and communications, CPU design, networks, distributed computing

• Discrete Structures (43): functions, sets, relations, logic, proof, counting, graphs and trees

• Graphics and Visual Computing (3): fundamental techniques, modeling, rendering, animation, virtual reality, vision

• Human-Computer Interaction (HCI) (8): principles of HCI, building a graphical user interface (GUI), HCI aspects of multimedia, and collaboration

• Information Management (10): database systems, data modeling and the relational model, query languages, data mining, hypertext and hypermedia, digital libraries

• Intelligent Systems (10): fundamental issues, search and optimization, knowledge representation, agents, natural language processing, machine learning, planning, robotics

• Net-centric Computing (15): Introduction to Netcentric computing, the Web as a client-server example, network security, data compression, multimedia, mobile computing

• Operating Systems (18): concurrency, scheduling and dispatch, virtual memory, device management, security and protection, file systems, embedded systems, fault tolerance

• Programming Fundamentals (38): algorithms and problem-solving, fundamental data structures, recursion, event-driven programming

• Programming Languages (21): history and overview, virtual machines, language translation, type systems, abstraction, objectoriented (OO) programming, functional programming, translation

• Social and Professional Issues (16): ethical responsibilities, risks and liabilities, intellectual property, privacy, civil liberties, crime, economics, impact of the Internet

• Software Engineering (31): metrics, requirements, specifications, design, validation, tools, management

Undergraduate computer science programs also provide students with regular access to wellequipped computer laboratories and networks, since laboratory work is an essential component of the curriculum.
When computer science majors finish college, they are expected to have a number of capabilities. Some programs prepare graduates for advanced study, while others (the majority) prepare them for entry into the work force. For workforce entry, a graduate should (ACM/IEEE, 2001):

1. Understand the essential facts, concepts, principles, and theories relating to computer science and software applications.

2. Use this understanding to design computerbased systems and make effective tradeoffs among design choices.

3. Identify and analyze requirements for computational problems and design effective specifications.

4. Implement (program) computer-based systems.

5. Test and evaluate the extent to which a system fulfills its requirements.

6. Use appropriate theory, practice, and tools for system specification, design, implementation, and evaluation.

7. Understand the social, professional, and ethical issues involved in the use of computer technology.

8. Apply the principles of effective information management and retrieval to text, image, sound, and video information.

9. Apply the principles of human-computer interaction to the design of user interfaces, Web pages, and multimedia systems.

10. Identify risks or safety aspects that may be involved in the operation of computing equipment within a given context.

11. Operate computing equipment and software systems effectively.

12. Make effective verbal and written presentations to a range of audiences.

13. Be able to work effectively as a member of a team.

14. Understand and explain the quantitative dimensions of a problem.

15. Manage one’s own time and develop effective organizational skills.

16. Keep abreast of current developments and continue with long-term professional growth.
The presence of a K–12 computer science program should allow pre-college students to begin developing these capabilities and skills.

2.3 The Current Status of K–12 Computer Science

Computer science has never been widely taught at the K–12 level in the United States. To help address this problem, the ACM Model High School Curriculum (ACM, 1993) was developed in 1993. This is a one-year course that covers core subjects, applications, and related topics.

The core topic selection in the 1993 model was motivated by an earlier, and now dated, college curriculum model. That model included the study of algorithms, programming languages, operating systems and user support, computer architecture, and the social and ethical context of computing. Its applications included CAD/CAM, speech, music, art, database, e-mail, multimedia and graphics, spreadsheets, word processing, and desktop publishing. Its electives included topics such as AI (expert systems, games, robotics), computational science, simulation and virtual reality, and software engineering.

For a variety of reasons, the ACM model curriculum was not widely implemented in secondary schools. One strong reason is that, since 1993, enormous changes have occurred in computer science itself, many of which were spurred by the emergence of the World Wide Web. These changes have worked to accelerate the datedness of the core topics in the 1993 model.

A more recent curriculum model, developed by a New Jersey Teachers’ Conference (Deek, 1999), aimed to provide a state-level standard for computer science that could be taught in all school districts. The core topics for that curriculum include algorithms, programming, applications, information systems, communications, and technology. This curriculum is designed for use in grades 9, 10, and 12, in a way that complements the AP computer science curriculum (offered in the grade 11). The grade 9 course provides 5 an introduction to programming and problem solving, the Internet, information, communication, hardware, social impact and ethics; the grade 10 course emphasizes programming and applications. At grade 12, a “topics” course provides an opportunity to offer interesting subjects like robotics, simulations, and animation.

In spite of these efforts, a survey conducted in 2002

(http://csta.acm.org/Research/sub/CSTAResearch-2.html)

confirms that neither the 1993 ACM model nor any other model has achieved widespread recognition or implementation in the United States. Seventy respondents, representing 27 states and three foreign countries, provided the following information.

Only 12 out of the 70 respondents replied that they have a state-mandated computer science curriculum at the high school level. However, the nature of that curriculum varied from state to state. The most extensive one identifies a separate computer science course at each grade level (9–12), while the most modest one designated “Introduction to the Computer” and “Internet Use of the Computer” as the only two state-mandated courses (at grades 9 and 10). So, even for states that offer any computer science courses, there is much divergence in the number and content of these courses. Where they are offered, computer science courses also seem to be available only as electives (only one out of the 70 respondents indicated that computer science was mandatory).

As for teacher preparation and certification, 27 of the 70 respondents replied that their state requires no computer science certification to teach computer science courses. A different source notes that secondary computer science courses are usually taught by faculty certified to teach mathematics (Deek, 1999).

The development of K–12 computer science is making more headway internationally than in the United States.
In Israel, a secondary school computer science curriculum (Gal-Ezer & Harel, 1999) was approved by the Ministry of Higher Education and implemented in 1998. It blends conceptual and applied topics, and is offered in grades 10, 11, and 12. All students in grade 10 are required to take a half-year course in the foundations of computer science. This is followed by 11⁄2 or 21⁄2 years of electives taught at grades 11 and 12. These electives have a particularly heavy emphasis on the foundations of algorithms.

In Canada, a comprehensive curriculum was recently implemented for all secondary schools in Ontario (Stephenson, 2002). It provides two alternative tracks, one emphasizing computer science and the other emphasizing computer engineering. All courses balance foundational knowledge with skills acquisition, and they prescribe outcomes at each level. At grade 9, a full-year “integrated technologies” course is available to all students. This is followed by three parallel three-year tracks—one in computer and information science and two in computer engineering.

In many other parts of the world, including Europe, Russia, Asia, South Africa, New Zealand, and Australia, computer science is being established in the K–12 curriculum. Thus, we feel a certain sense of urgency about the establishment of computer science in the United States—this nation’s educated workforce should remain competitive with that of other nations in its level of understanding about computer science in the modern world.

3 A Comprehensive Model Curriculum

 Building on the lessons of the past and the needs of the present and the future, we propose a four-level model curriculum for K–12 computer science that focuses on fundamental concepts and has the following general goals:
1. The curriculum should prepare students to understand the nature of computer science and its place in the modern world.

2. Students should understand that computer science interleaves principles and skills.

3. Students should be able to use computer science skills (especially algorithmic thinking) in their problem-solving activities in other subjects. One simple example is the use of logic for understanding the semantics of English in a language arts class. There are many others.

4. The computer science curriculum should complement IT and AP computer science curricula in any schools where they are currently offered.
If a K–12 computer science curriculum is widely implemented and these goals are met, high school graduates will be prepared to be knowledgeable users and critics of computers, as well as designers and builders of computing applications that will affect every aspect of life in the 21st century.
The overall structure of this model is shown in Figure 1. As this figure suggests, our model has four different levels, whose goals and content are introduced below.

[image: image1.jpg]K-8

9or 10

100r 11

1lor12

Recommended Grade Level

Level I—Foundations of

Computer Science

¥

Level [I—Computer Science

In the Modern Worl

d

~

Level I/l—Computer Science
as Analysis and Design

pd

Level [V—Topics in
Computer Science

Figure 1. Structure of a K-12 Computer Science Curriculum

Level I (recommended for grades K–8) should provide elementary school students with foundational concepts in computer science by integrating basic skills in technology with simple ideas about algorithmic thinking. This can be best accomplished by adding short modules to existing science, mathematics, and social studies units. A combination of the NETS (ISTE, 2002) standards and an introduction to algorithmic thinking (as offered, for instance, by Logo (Papert, 1980) or other handson experiences (Bell, 2002) would ensure that students meet this goal.
Students at Level II (recommended for grade 9 or 10) should acquire a coherent and broad understanding of the principles, methodologies, and applications of computer science in the modern world. This can best be offered as a one-year course accessible to all students, whether they are college-bound or workplace-bound. Since, for most students, this Level II course will be their last encounter with computer science, it should be considered essential preparation for the modern world.
Students who wish to study more computer science may elect the Level III (recommended for grade 10 or 11) course, a one-year elective that would earn a curriculum credit (e.g. math or science). This course continues the study begun at Level II, but it places particular emphasis on the scientific and engineering aspects of computer science—mathematical principles, algorithmic problem-solving and programming, software and hardware design, networks, and social impact. Students will elect this course to explore their interest and aptitude for computer science as a profession.
Finally, the Level IV (recommended for grade 11 or 12) offering is an elective that provides depth of study in one particular area of computer science. This may be, for example, an AP computer science (AP, 2002) course, which offers depth of study in programming and data structures. Alternatively, this offering may be a projects-based course in multimedia design or a vendor-supplied course that leads to professional certification. Any Level IV course will naturally require the Level II course as a prerequisite, and some will require the Level III course as well.

The following subsections provide more detailed discussions of the topics and courses that can be offered at each of these four levels.

3.1 Level I—Foundations of Computer Science

Because the foundations of computer science have a major information technology component, it is important here to reaffirm the need for technology support in the K–12 classroom. Successful integration of technology to support learning goals depends upon several factors:

• vision and leadership for successful implementation and long-term success,

• access to physical resources (hardware and software),

• physical arrangement of those resources in accessible learning spaces,

• time and incentives to support classroomrelevant professional development opportunities for educators,

• time for planning effective integration into new and existing curricula,

• time for reviewing and evaluating new technologies and resources, and

• ongoing financial support for a sustained technology infrastructure.

It also depends upon a clear vision of what expectations are necessary and appropriate at every level. In this document we explore a number of different levels of computer science education throughout the K–12 years. It is clear to us that whatever is achieved in high school depends upon the effectiveness of student access to technology and achievement of computer-related learning milestones at the elementary level. So if elementary schools provide students with these first building blocks of computer fluency, secondary schools will be able to implement more comprehensive computer science programs themselves.

3.1.a. Topics and Goals

The National Educational Technology Standards (NETS) (ISTE, 2002) provide an excellent starting place for defining requirements for elementary student preparedness in computer science.

To live and work successfully in an increasingly information-rich society, K–8 students must learn to use computers effectively and incorporate the idea of algorithmic thinking into their daily problem-solving vocabulary. To ensure these outcomes, schools must provide computing tools that enable students to solve problems and communicate using a variety of media; to access and exchange information; compile, organize, analyze, and synthesize information; draw conclusions and make generalizations from information gathered; understand what they read and locate additional information as needed; become self-directed learners; collaborate and cooperate in team efforts; analyze a problem and develop an algorithmic solution; and interact with others using computers in ethical and appropriate ways.

Except in the context of mathematics education, this particular topic area is not a conventional part of the K–8 curriculum. That is, the concept of algorithm is used only to teach students the steps of arithmetic (addition, multiplication) and other basic mathematical ideas. However, the notion of algorithm affects students in a much richer array of problemsolving situations that they encounter in their lives.

In its simplest form, an algorithm is a method for solving a problem in a step-by-step manner. So children learn about algorithmic problem solving whenever they discover a collection of steps that can be carried out to accomplish a task. These steps should accommodate unusual contingencies (using conditional, or “if” statements) and repetitions (using loops, or “while” statements). Viewed in this way, algorithmic thinking is not simply a means to help children understand mathematical concepts—it has a much richer range of uses. Here are a few example problems that illustrate this point and would be appropriate at the K–8 level.

Give a complete algorithmic definition for:

1. finding your way out of a maze (Turtle graphics, robotics)

2. a dog retrieving a thrown ball

3. baking cookies

4. going home from school

5. making a sand castle

6. arranging a list of words in alphabetical order.

Thus, we agree with teachers who believe that students at this age ought to begin thinking algorithmically as a general problem-solving strategy. What children do, not what they see, may have the greatest impact on learning at the K–8 level. Thus, it makes sense to develop more teaching strategies that encourage students to engage in the process of visualizing an algorithm. Seymour Papert’s pioneering experiments in the 1980s corroborate this belief, and his seminal work Mindstorms and related curricula (Papert, 1980) provide many more examples of how K–8 students can be engaged in algorithmic thinking. Additional examples of computer science topics appropriate for the K–8 level are included in the next section.

3.1.b. Grade-Level Breakdowns

To ensure that students achieve these goals, we paraphrase here the NETS model (ISTE, 2002), which identifies different sets of outcomes for three different groups of students: grades K–2, grades 3–5, and grades 6–8. We have augmented that model by adding outcomes that engage students with algorithmic thinking and other foundational elements of computer science.
Grades K–2: Upon completion of grade 2, students will:

1. Use standard input and output devices to successfully operate computers and related technologies.

2. Use a computer for both directed and independent learning activities.

3. Communicate about technology using developmentally appropriate and accurate terminology.

4. Use developmentally appropriate multimedia resources (e.g., interactive books, educational software, elementary multimedia encyclopedias) to support learning.

5. Work cooperatively and collaboratively with peers, teachers, and others when using technology.

6. Demonstrate positive social and ethical behaviors when using technology.

7. Practice responsible use of technology systems and software.

8. Create developmentally appropriate multimedia products with support from teachers, family members, or student partners.

9. Use technology resources (e.g., puzzles, logical thinking programs, writing tools, digital cameras, drawing tools) for problem solving, communication, and illustration of thoughts, ideas, and stories.

10. Gather information and communicate with others using telecommunications, with support from teachers, family members, or student partners.

11. Understand how 0s and 1s can be used to represent information, such as digital images and numbers.

12. Understand how to arrange (sort) information into useful order, such as a telephone directory, without using a computer (see Appendix for examples).

Grades 3–5: Upon completion of grade 5, students will:

1. Be comfortable using keyboards and other input and output devices, and reach an appropriate level of proficiency using the keyboard with correct fingering.

2. Discuss common uses of technology in daily life and the advantages and disadvantages those uses provide.

3. Discuss basic issues related to responsible use of technology and information, and describe personal consequences of inappropriate use.

4. Use general-purpose productivity tools and peripherals to support personal productivity, remediate skill deficits, and facilitate learning throughout the curriculum.

5. Use technology tools (e.g., multimedia authoring, presentation, Web tools, digital cameras, scanners) for individual and collaborative writing, communication, and publishing activities to create presentations for audiences inside and outside the classroom.

6. Use telecommunications efficiently to access remote information, communicate with others in support of direct and independent learning, and pursue personal interests.

7. Use online resources (e.g., e-mail, online discussions, Web environments) to participate in collaborative problem-solving activities for the purpose of developing solutions or products for audiences inside and outside the classroom.

8. Use technology resources (e.g., calculators, data collection probes, videos, educational software) for problem-solving, self-directed learning, and extended learning activities.

9. Determine which technology is useful and select the appropriate tool(s) and technology resources to address a variety of tasks and problems.

10. Evaluate the accuracy, relevance, appropriateness, comprehensiveness, and bias that occur in electronic information sources.

11. Develop a simple understanding of an algorithm, such as text compression, search, or network routing, using computer-free exercises (see Appendix for examples).

Grades 6–8: Upon completion of grade 8, students will:

1. Apply strategies for identifying and solving routine hardware and software problems that occur during everyday use.

2. Demonstrate knowledge of current changes in information technologies and the effects those changes have on the workplace and society.

3. Exhibit legal and ethical behaviors when using information and technology and discuss consequences of misuse.

4. Use content-specific tools, software, and simulations (e.g., environmental probes, graphing calculators, exploratory environments, Web tools) to support learning and research.

5. Apply productivity/multimedia tools and peripherals to support personal productivity, group collaboration, and learning throughout the curriculum.

6. Design, develop, publish, and present products (e.g., Web pages, videotapes) using technology resources that demonstrate and communicate curriculum concepts to audiences inside and outside the classroom.

7. Collaborate with peers, experts, and others using telecommunications tools to investigate educational problems, issues, and information, and to develop solutions for audiences inside and outside the classroom.

8. Select appropriate tools and technology resources to accomplish a variety of tasks and solve problems.

9. Demonstrate an understanding of concepts underlying hardware, software, algorithms, and their practical applications.

10. Discover and evaluate the accuracy, relevance, appropriateness, comprehensiveness, and bias of electronic information sources concerning real-world problems.

11. Understand the graph as a tool for representing problem states and solutions to complex problems (see Appendix for examples).

12. Understand the fundamental ideas of logic and its usefulness for solving real-world problems (see Appendix for examples).

3.2 Level II—Computer Science in the Modern World

This is a one-year course (or the equivalent) that would be accessible to all students, whether they are college-bound or workplace-bound. The goal of this course is to provide all students with an introduction to the principles of computer science and its place in the modern world. This course should also help students to use computers effectively in their lives, thus providing a foundation for successfully integrating their own interests and careers with the resources of a technological society.

In this course, high school students can acquire a fundamental understanding of the operation of computers and computer networks and create useful programs implementing simple algorithms. By developing Web pages that include images, sound, and text, they can acquire a working understanding of the Internet, common formats for data transmission, and some insights into the design of the humancomputer interface. Exposure to career possibilities and discussion of ethical issues relating to computers should also be important threads in this course.

Prior to this course, students should have gained experience using computers, as would normally occur at Level I. They should have used, modified, and created files for a variety of purposes, accessed the Internet and databases for both research and communication, and used other tools such as spreadsheets and graphics. Finally, they should have been introduced to the basic idea of algorithmic thinking and its uses in their daily lives.

3.2.a. Topics and Goals

A major outcome of this course (or its equivalent) is to provide students with general knowledge about computer hardware, software, languages, networks, and their impact in the modern world.4 That is, since most students at Level II will eventually encounter computers and networks as users, the overarching aim here is to prepare students to master computer science concepts from the user’s point of view rather than from the designer’s. For instance, the idea that a robot needs a method of acquiring sensory data from its environment draws attention to the general notion of an “input device” beyond the standard keyboard and mouse. Teaching students about various input devices currently in use should help demystify the general idea of input, and prepare students to be comfortable using devices with which they are not yet familiar.

Students should gain a conceptual understanding of the following topics in computer science: 1. Principles of computer organization and the major components (input, output, memory, storage, processing, software, operating system, etc.)

2. The basic steps in algorithmic problemsolving (problem statement and exploration, examination of sample instances, design, program coding, testing and verification)

3. The basic components of computer networks (servers, file protection, routing protocols for connection/communication, spoolers and queues, shared resources, and fault-tolerance).

4. Organization of Internet elements, Web page design (forms, text, graphics, client- and server-side scripts), and hypermedia (links, navigation, search engines and strategies, interpretation, and evaluation).

5. The notion of hierarchy and abstraction in computing, including high-level languages, translation (compilers, interpreters, linking), machine languages, instruction sets, and logic circuits.

6. The connection between elements of mathematics and computer science, including binary numbers, logic, sets, and functions.
7. The notion of computers as models of intelligent behavior (as found in robot motion, speech and language understanding, and computer vision), and what distinguishes humans from machines.

8. Examples (like programming a telephone answering system) that identify the broad interdisciplinary utility of computers and algorithmic problem solving in the modern world.

9. Ethical issues that relate to computers and networks (including security, privacy, intellectual property, the benefits and drawbacks of public domain software, and the reliability of information on the Internet), and the positive and negative impact of technology on human culture.

10. Identification of different careers in computing and their connection with the subjects studied in this course (e.g., information technology specialist, Web page designer, systems analyst, programmer, CIO).
3.2.b. Laboratory Work: Algorithms, Programming, and Web Page Design

Students in this course should gain experience designing algorithms and programming solutions to a variety of computational problems. While the choice of programming language and environment is up to the instructor, the algorithmic design and programming component of the course should include the following:

• Variables, data types, and the representation of data in computers

• Managing complexity through top-down and object-oriented design

• Procedures and parameters

• Sequences, conditionals, and loops (iteration)

• Tools for expressing design (flowcharts, pseudocode, UML, N-S charts)

The Web page design component of this course should cover the following ideas:

• The use of hypertext links to load new pages or activate processes

• Storing, compressing, encrypting, and retrieving image, video, and sound data

• User interface design

• Tools for expressing design (storyboard, site map)

3.2.c. Context and Constraints
 Each school system has its own constraints with regard to student scheduling, availability of knowledgeable staff, and computer resources. Some schools may choose to begin by implementing an elective course that covers only a subset of the above concepts. We believe that, while such initial steps are valuable, they must nonetheless be identified as first steps toward the ultimate goal of a full course required of all students for graduation.
Finally, it is important to distinguish the goals and themes of this course from those of information technology, especially those that comprise the notion of IT fluency (see section 2.1). This course provides the first opportunity to view computer science as a coherent field of study and professional engagement. That is, while IT fluency focuses on technological skills and their uses in other academic subjects, this course is a study of computer science as an academic subject per se.

Several example activities that can be used to teach this course are shown in the Appendix.
3.3 Level III—Computer Science as Analysis and Design

This is a one-year course (or the equivalent) that should earn curriculum credit (e.g., science or math). The goal of this course is to continue the study of computer science, placing particular emphasis on its features as a scientific and engineering discipline.

In this course, high school students can go beyond a fundamental understanding of the operation of computers and explore more complex and interesting topics of computer science. This course also helps students improve their problem-solving and programming skills in preparation for the Advanced Placement A course. As in higher level math and science curricula, students will be able to see the connection between the fundamentals they have learned in Levels I and II to integrate programming and design with complex “real world” projects.

3.3.a. Topics and Goals

The major goal of this course is for students to develop the computer science skills of algorithm development, problem solving, and programming while using software engineering principles. While the emphasis of the course will be on programming, students will also be introduced to other important topics, such as interface design, the limits of computers, and societal and ethical issues of software engineering.

By the end of this course, students should understand or have a working knowledge of these topics:

1. Fundamental ideas about the process of program design and problem solving, including style, abstraction, and initial discussions of correctness and efficiency as part of the software design process.

2. Simple data structures and their uses

3. Topics in discrete mathematics: logic, functions, sets, and their relation to computer science 4. Design for usability: Web page design, interactive games, documentation

5. Fundamentals of hardware design

6. Levels of language, software, and translation: characteristics of compilers, operating systems, and networks

7. The limits of computing: what is a computationally “hard” problem? (e.g., ocean modeling, air traffic control, gene mapping) and what kinds of problems are computationally unsolvable (e.g., the halting problem)

8. Principles of software engineering: software projects, teams, the software life cycle

9. Social issues: software as intellectual property, professional practice

10. Careers in computing: computer scientist, computer engineer, software engineer, information technologist

3.3.b. Laboratory Work: Programming,

Design, and Other Activities Students in this course should gain experience designing algorithms and programming solutions to a variety of computational problems. While the choice of programming language and environment is up to the instructor, the programming component of the course should include the following:
• Methods (functions) and parameters
• Recursion
• Objects and classes (arrays, vectors, stacks, queues, and their uses in problem-solving)
• Graphics programming
• Event-driven and interactive programming
Hardware and software engineering has several topics that can be introduced during this course and included among its programming projects:

• Hardware and systems: logic, gates and circuits, binary arithmetic, machine and assembly language, operating systems, user interfaces, compilers

• Software engineering: requirements, design, teams, testing and maintenance, documentation, software design tools

• Societal issues in software engineering, limits of of computing, levels of languages, computing careers

3.3.c. Context and Constraints

Since this is a laboratory-intensive course, students will need regular access to appropriate computing facilities and software. A number of viable programming language alternatives exist, and so we recommend no particular programming language to support this course. Surely, the choice of language depends on local conditions, such as teacher expertise, laboratory hardware configuration, and availability and cost of software support.

Moreover, this course is intended to be much broader in scope than the AP curriculum, and thus should complement it in a way that is accessible to all students—not just those preparing for college. However, for students who are thinking about taking an AP computer science course at Level IV (see section 3.4), this course can serve as a precursor.

This course is also intended to cover the fundamentals of computer science more broadly than a typical information technology course. While it has elements of IT, this course also introduces students to concepts that are not typically covered in an IT curriculum, such as the limits of computing and data structures. Example activities that have been used in this kind of course are shown in Appendix A.3.

3.4 Level IV—Topics in Computer Science

 At this level, interested and qualified students should be able to select one from among several electives to gain depth of understanding or special skills in particular areas of computer science. All of these electives will require the Level II course as a prerequisite, while some may require the Level III course as well. Most important, these courses provide students with an opportunity to explore topics of personal interest in greater depth, and thus prepare for the workplace or for further study at the post-secondary level.

These electives include, but are not necessarily limited to:
• Advanced Placement (AP) Computer Science

• A projects-based course in which students cover a topic in depth.

• A vendor-supplied course, which may be related to professional certification. These are discussed in more detail below.

3.4.a. AP Computer Science

The AP Computer Science curriculum is well established (AP, 2002), and is offered at many secondary schools for students planning to continue their education in a two- or four-year college or university, possibly in computer science, business, or a related field.

Students taking an AP course should have completed Levels I and II. Students entering an AP Computer Science course need to be familiar with the basic algorithmic concepts introduced at those levels. The programming concepts covered in Level III overlap somewhat with the AP course, so some of the AP course can serve as a review if students have had the Level III course.

The curriculum that prepares students for the AP computer science exams provides an excellent foundation for future study. This curriculum has two courses:

• The A course emphasizes problem solving and algorithm development, and introduces elementary data structures. Students who complete the A course and score well on the exam may qualify for one-semester of college credit.

• The AB course extends the foundation of the A course by including more substantial work with data structures and recursive algorithms.

The College Board suggests that the choice between A and AB be left to the school and students. A school might wish to initially offer the A course as it is less comprehensive, and then move toward the AB course as instructor knowledge and entering student levels increase.
In schools that implement this curriculum recommendation, students will arrive at Level IV with a standard background that enables them to be successful in the AB course. Also, high schools need to consider the significant staffing issues implied by this curriculum recommendation, along with the staffing tradeoffs that result from offering 0, 1, or 2 AP courses in a setting that also offers the Level II and III courses described above.5 For example, a school that is neither large nor resource-rich may prefer to offer the Level III course alone, and then supplement that course with additional material that will support a smaller group of students preparing for the AP A exam.

Example modules that can be used to teach this course are shown in the Appendix A.4.
3.4.b. Project-Based Courses

This kind of course would be available to all students who have completed the Levels I and II curricula. Some variants of this course would also require completion of Level III (see below). This could be either a half-year or a full-year course.

The projects in this kind of course will naturally address diverse student interests and specific faculty expertise. The specific projects that are chosen from year to year will be fluid and will adjust as needed to meet the ever-changing characteristics of computer science and information technology. Ideally, each project should build upon basic computer science concepts and help students develop professional skills in the application of technology.

While some of the project curriculum may be more skills-based, the skills need to be tied to the “behindthe- scenes” activities of the software—particularly how each task is implemented in the software (e.g., what is happening when you click “bold”?). Answering such questions enables students to problem-solve when software does not perform as anticipated. Additional computer science topics are visited throughout these projects.

Here are some projects that could populate such a course. See the Appendix for more details.

EXAMPLE: Desktop Publishing. This course introduces planning, page layout, and the use of templates to create flyers, documents, brochures, and newsletters. Word processing and graphical editing fluency (Level I) will help ensure student success. Methods of distribution of these documents in both written and electronic formats should be included. This will necessitate understanding of Internet concepts and network connectivity (Level II).

EXAMPLE: Presentation. Design The ability to communicate and share ideas should be a core requirement for all high school graduates. Communication can be written and/or oral. This type of project focuses on planning a presentation— including outlining, converting the outline into a document, and generating the presentation. Concepts covered include appropriate use of text, colors, graphics, sound, and animations on slides as well as linking within and outside the presentation. Ultimately, students will present to an audience. Fluency with word processing software (Level I) and multimedia concepts (Level II) is required.

EXAMPLE: Multimedia. The use of multimedia is increasing steadily at the user level, fueled by more efficient hardware and the availability of digital cameras and digital audio equipment. However, multimedia is often abused when incorporated into programs, Web pages, and presentations. This project will provide instruction in the use of digital audio and video equipment and related editing software. A major focus will be deploying multimedia in a responsible fashion. Basic software skills (Level I) and an understanding of multimedia concepts (Level II) are required.

EXAMPLE: Graphics. This class explores bitmap and vector-based graphics. The discussion includes benefits and limitations of each type of software and hands-on experience with both. CAD, CAM, and 3-D design software should be explored as well as bitmap software for creating and editing of graphics. Availability of a digital camera and scanner is required. Responsible deployment of graphics including style and legal issues needs to be investigated. The discussion of vector-based graphics will be facilitated by completion of Level III—limits of computers and design for usability.

EXAMPLE: Design and Development of Web Pages. At Level II, students are exposed to Internet concepts and HTML. This course presents a more in-depth view of the design and development issues that need to be considered for a multi-platform international implementation. A focus issue is the standardization of Web page development using the recommendations of the WWW Consortium. Web page development is presented and evaluated using text editors, HTML editors, converters, and Web authoring programs.

EXAMPLE: Web Programming. Students who have successfully completed Level III but do not wish to take an AP course might nevertheless enjoy applying their programming skills to the WWW. To be successful, a solid understanding of Internet concepts, Web page design and development issues, and basic programming concepts will be required. Topics in this course can include client-side and server-side scripting languages. Students will need to write scripts and deploy them within Web pages or on the Web server.

EXAMPLE: Emerging Technologies. This project can include several distinct topics, and its content is expected to change on a regular basis. An example topic for upcoming years might be XML/XSL and wireless connectivity. These areas can be tied together with a discussion of requirements for the same data to be represented on a PC, personal digital assistant (PDA), and cell phone. Curriculum and materials for this topic would need to be developed from current resources on the Web, perhaps in conjunction with local colleges and universities, and with input from the professional sector of the Business Community.

A sample of some other topics (along with their prerequisites) includes:

• The computer and animation (Level II)

• Networking technologies (Level III)

• Programming simulations (e.g., a computercontrolled chemistry experiment) (Level III)

• Object-oriented design and coding (Level IV— AP computer science)

• Effective use of computer applications (Level II)

� 1 An algorithm is a precise, step-by-step description of a solutionto a problem. Programming is used to implement algorithms oncomputers. While programming is a central activity in computer science, it is only a tool that provides a window into a much richer academic and professional field. That is, programming is to the study of computer science as literacy is to the study of literature.

